香蕉抗寒研究进展
Research Progress on the Cold Resistance of Banana (Musa nana L.)
DOI: 10.12677/BR.2017.64025, PDF, HTML, XML, 下载: 1,695  浏览: 3,733  国家自然科学基金支持
作者: 王静毅, 刘菊华*, 张建斌*, 徐碧玉*:中国热带农业科学院热带作物生物技术研究所,农业部热带作物生物学与遗传资源利用重点实验室, 海南 海口;金志强:中国热带农业科学院热带作物生物技术研究所,农业部热带作物生物学与遗传资源利用重点实验室, 海南 海口;中国热带农业科学院海口实验站,海南省香蕉遗传改良重点实验室,海南 海口
关键词: 香蕉抗寒性研究进展Banana Cold Tolerance Research Progress
摘要: 香蕉是热带亚热带植物,低温是影响其生长及产量的重要环境因子,温度低于15℃就会抑制香蕉的正常生长。因此,研究香蕉品种的抗寒性具有重要的价值及意义。本文对国内外香蕉抗寒的生理生化、分子生物学及育种方面的研究进行了总结,旨在为培育香蕉抗寒新种质提供参考。
Abstract: The cultivated banana (Musa acuminata) is a plant that is widely cultivated throughout tropical and subtropical region. Low temperature is a significant environment factor which affects the growth and yield of banana. When the temperatures < 15˚C, the regular growth of banana is inhibited. Thus, it is important to study the cold resistance of banana. In this paper, the physiological and biochemical, molecular mechanism, and breeding study on the cold resistance of banana were summarized to provide references for breeding banana new germplasms with cold resistance.
文章引用:王静毅, 刘菊华, 张建斌, 金志强, 徐碧玉. 香蕉抗寒研究进展[J]. 植物学研究, 2017, 6(4): 193-200. https://doi.org/10.12677/BR.2017.64025

参考文献

[1] 董涛, 陈新建, 凡超, 等. 我国香蕉产业面临的主要问题与对策[J]. 广东农业科学, 2013(11): 220-223.
[2] Frison, E.A. and Sharrock, S.L. (1999) The Economic, Nutritional and Social Importance of Bananas in the World. In: Picq, C., Fouré, E. and Frison, E.A., Eds., Bananas and Food Security, INIBAP, Montpellier, 21-35.
[3] 刘长全. 香蕉寒害研究进展[J]. 果树学报, 2006, 23(3): 448-453.
[4] 周东辉, 郭长福, 傅炽栋, 等. 异常气候对香蕉的影响及其应对措施[J]. 中国热带农业, 2008(5): 58-59.
[5] 林贵美, 李小泉, 韦绍龙, 等. 2011年早春我国香蕉寒害调查及寒害后恢复对策[J]. 南方农业学报, 2012, 43(1): 46-49.
[6] 王安邦, 金志强, 刘菊华, 等. 香蕉寒害研究现状及展望[J]. 生物技术通报, 2014(8): 28-33.
[7] 康国章, 陶均, 孙谷畴, 等. H2O2和Ca2+对受低温胁迫香蕉幼苗抗冷性的影响[J]. 园艺学报, 2002, 29(2): 119- 122.
[8] 余土元, 冯颖竹. 低温对香蕉幼苗的伤害及外源H2O2、CaCl2对香蕉抗寒性的影响[J]. 中国农学通报, 2011, 27(25): 219-223.
[9] 汤红玲, 李江, 陈惠萍. 外源一氧化氮对香蕉幼苗抗冷性的影响[J]. 西北植物学报, 2010, 30(10): 2028-2033.
[10] 韦建学, 李绍鹏, 李茂富. 外源甜菜碱对香蕉幼苗抗冷性的影响[J]. 广东农业科学, 2007(7): 41-43.
[11] 李茂富, 李效超, 李绍鹏. 壳聚糖和甜菜碱对低温胁迫下香蕉幼苗抗寒性的影响[J]. 广东农业科学, 2008(11): 20-22.
[12] 李效超. 化学物质诱导香蕉幼苗抗冷性的生理效应研究[D]: [硕士学位论文]. 海口: 海南大学园艺学院, 2009.
[13] 周玉萍, 郑燕玲, 田长恩, 等. 脱落酸, 多效唑和油菜素内酯对低温期间香蕉过氧化物酶和电导率的影响[J]. 广西植物, 2002, 22(5): 444-448.
[14] 刘德兵, 魏军亚, 李绍鹏, 等. 油菜素内酯提高香蕉幼苗抗冷性的效应[J]. 植物研究, 2008, 28(2): 195-198, 221.
[15] 周玉萍, 王正询, 田长恩. 多胺与香蕉抗寒性的关系的研究[J]. 广西植物, 2003, 23(4): 352-356.
[16] 冯斗, 禤维言, 黄政树, 等. 茉莉酸甲酯对低温胁迫下香蕉幼苗的生理效应[J]. 果树学报, 2009, 26(3): 390-393.
[17] 冯斗, 禤维言, 黄政树, 等. 水杨酸甲酯对香蕉苗抗寒生理特性的影响[J]. 中国南方果树, 2009, 38(6): 5-9.
[18] 周利民, 陈惠萍. 水杨酸对冷胁迫下香蕉幼苗抗冷性的效应[J]. 亚热带植物科学, 2009, 38(1): 19-22.
[19] 韦弟, 李杨瑞, 邸南南, 等. 乙烯利对香蕉抗寒性的影响[J]. 热带作物学报, 2009, 30(12): 1789-1791.
[20] 黄芳, 李茂富, 汪良驹, 等. 叶施和根灌 ALA 对香蕉幼苗冷害的缓解效应[J]. 西南农业学报, 2012, 25(5): 1781-1785.
[21] Kang, G.Z., Zhu, G.H., Peng, X.X., et al. (2004) Isolations of Salicylic Acid Induction Expressed Genes in Chilling-Stressed Banana Seedling Leaves Using MRNA Differential Display. Journal of Plant Physiology and Molecular Biology, 30, 225-228.
[22] Santos, C.M., Martins, N.F., Hörberg, H.M., et al. (2005) Analysis of Expressed Sequence Tags from Musa acuminata Spp. Burmannicoides, var. Calcutta 4 (AA) Leaves Submitted to Temperature Stresses. Theoretical and Applied Genetics, 110, 1517-1522.
https://doi.org/10.1007/s00122-005-1989-5
[23] 祁君凤, 冯仁军, 程萍, 等. 香蕉叶片低温胁迫下差异表达CDNA消减文库的构建[J]. 热带生物学报, 2010, 1(2): 110-113.
[24] 冯冬茹, 王宏斌, 刘兵, 等. 大蕉冷诱导差减文库的构建与分析[J]. 中山大学学报, 2010, 49(5): 107-112.
[25] 李卫亮, 李茂富, 贺军虎, 等. 香蕉抗寒相关功能基因研究进展[J]. 分子植物育种, 2015, 13(5): 1185-1192.
[26] 刘德兵, 魏军亚, 李绍鹏, 等. 香蕉RuBPCase小亚基基因全长CDNA的克隆和分析[J]. 热带作物学报, 2007, 28(3): 57-61.
[27] Feng, R.J., Lu, L.F., Yuan, K.H., et al. (2010) Cloning and Expression Analysis of Rubredoxin from Cold-Treated Banana Leaves. International Journal of Experimental Botany, 79, 163-168.
[28] Feng, D.R., Liu, B., Li, W.Y., et al. (2009) Over-Expression of a Cold-Induced Plasma Membrane Protein Gene (MpRCI) from Plantain Enhances Low Temperature-Resistance in Transgenic Tobacco. Environmental and Experimental Botany, 65, 395-402.
https://doi.org/10.1016/j.envexpbot.2008.12.009
[29] 张妙霞. 野生香蕉(Musa Spp., AB Group)抗寒相关基因的克隆与表达分析[D]: [博士学位论文]. 福州: 福建农林大学, 2010.
[30] 匡云波. 香蕉叶片糖代谢若干关键酶基因的克隆及其在低温胁迫下的表达研究[D]: [博士学位论文]. 福州: 福建农林大学, 2012.
[31] 张俊芳, 黄俊生, 丛汉卿, 等. 香蕉抗逆相关基因MaERF的克隆与表达分析[J]. 园艺学报, 2013, 40(8): 1567- 1573.
[32] 赖志宸, 赖恭梯, 张群林, 等. 野生蕉(Musa Spp., AB Group)抗寒基因FAD7的分子克隆与功能分析[J]. 热带作物学报, 2013, 34(10): 1947-1954.
[33] Wang, Y., Lu, W.J., Jiang, Y.M., et al. (2006) Expression of Ethylene-Related Expansin Genes in Cool-Stored Ripening Banana Fruit. Plant Science, 170, 962-967.
https://doi.org/10.1016/j.plantsci.2006.01.001
[34] He, L.H., Chen, J.Y., Kuang, J.F., et al. (2012) Expression of Three SHSP Genes Involved in Heat Pretreatment-Induced Chilling Tolerance in Banana Fruit. Journal of the Science of Food and Agriculture, 92, 1924-1930.
https://doi.org/10.1002/jsfa.5562
[35] Chen, J., Chen, J.Y., Wang, J.N., et al. (2012) Molecular Characterization and Expression Profiles of Macol1, A Constans-Like Gene in Banana Fruit. Gene, 496, 110-117.
https://doi.org/10.1016/j.gene.2012.01.008
[36] Wang, J.N., Kuang, J.F., Shan, W., et al. (2012) Expression Profiles of a Banana Fruit Linker Histone H1 Gene Ma His1 and Its Interaction with a WRKY Transcription Factor. Plant Cell Report, 31, 1485-1494.
https://doi.org/10.1007/s00299-012-1263-7
[37] 张建斌, 贾彩红, 邓秋菊, 等. 香蕉苹果酸脱氢酶基因克隆及其逆境胁迫表达[J]. 西北植物学报, 2012, 32(10): 1942-1949.
[38] 程晓培, 徐碧玉, 刘菊华, 等. 香蕉钙调蛋白基因MaCAM在非生物胁迫下的表达分析[J]. 生命科学研究, 2013, 17(1): 20-23.
[39] 王安邦, 金志强, 刘菊华, 等. 香蕉泛素结合酶基因MaUCE2在非生物胁迫下的表达分析[J]. 生物技术通报, 2013, 1(5): 77-80.
[40] Wang, Z., Huang, S., Jia, C., et al. (2013) Molecular Cloning and Expression of Five Glutathione S-Trans-Ferase (Gst) Genes from Banana (Musa acuminata L. AAA Group, cv. Cavendish). Plant Cell Report, 32, 1373-1380.
https://doi.org/10.1007/s00299-013-1449-7
[41] 贾彩红, 金志强, 王绍华, 等. 香蕉乙醇脱氢酶基因的克隆及其逆境胁迫表达[J]. 中国农学通报, 2014, 30(7): 109-115.
[42] 邢文婷, 徐碧玉, 王卓, 等. 香蕉胁迫相关蛋白基因的克隆及其表达分析[J]. 西北植物学报, 2014, 34(2): 0225-0230.
[43] Shekhawat, U.K., Srinivas, L. and Ganapathi, T.R. (2011) Cloning and Characterization of a Novel Stress-Responsive WRKY Transcription Factor Gene (MusaWRKY71) from Musa Spp. cv. Karibale Monthan (ABB group) Using Transformed Banana Cells. Molecular Biology Report, 38, 4023-4035.
https://doi.org/10.1007/s11033-010-0521-4
[44] Zhao, M.L., Wang, J.N., Shan, W., et al. (2013) Induction of Jasmonate Signalling Regulators Mamyc2s and Their Physical Interactions with Maice1 in Methyl Jasmonate-Induced Chilling Tolerance in Banana Fruit. Plant Cell Environment, 36, 30-51.
https://doi.org/10.1111/j.1365-3040.2012.02551.x
[45] Peng, H.H., Shan, W., Kuang, J.F., et al. (2013) Molecular Characterization of Cold-Responsive Basic Helix- Loop-Helix Transcription Factors Mabhlhs that Interact with Maice1 in Banana Fruit. Planta, 238, 937-953.
https://doi.org/10.1007/s00425-013-1944-7
[46] Shan, W., Kuang, J.F., Lu, W.J., et al. (2014) A Banana Fruit Nac Transcription Factor Manac1 Is a Direct Target of Maice1 and Involved in Cold Stress through Interacting with Macbf1. Plant Cell Environment, 37, 2116-2127.
https://doi.org/10.1111/pce.12303
[47] 杨洋, 赖恭梯, 赖钟雄. 三明野生蕉 Whirly 转录因子的克隆及其在低温胁迫下的定量表达分析[J]. 热带作物学报, 2014, 35(8): 1533-1538.
[48] Yang, Q.S., Wu, J.H., Li, C.Y., et al. (2012) Quantitative Proteomic Analysis Reveals that Antioxidation Mechanisms Contribute to Cold Tolerance in Plantain (Musa paradisiaca L.; ABB Group) Seedlings. Molecular Cell Proteomics, 11, 1853-1869.
https://doi.org/10.1074/mcp.M112.022079
[49] Yang, Q.S., Gao, J., He, W.D., et al. (2015) Comparative Transcriptomics Analysis Reveals Difference of Key Gene Expression between Banana and Plantain in Response to Cold Stress. BMC Genomics, 16, 446.
https://doi.org/10.1186/s12864-015-1551-z
[50] D'Hont, A., Denoeud, F., Aury, J.M., et al. (2012) The Banana (Musa acuminata) Genome and the Evolution of Monocotyledonous Plants. Nature, 488, 213-217.
https://doi.org/10.1038/nature11241
[51] Carrington, J.C. and Ambros, V. (2003) Role of Micrornas in Plant and Animal Development. Science, 301, 336-338.
https://doi.org/10.1126/science.1085242
[52] Bartel, D.P. (2004) MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. Cell, 116, 281-297.
https://doi.org/10.1016/S0092-8674(04)00045-5
[53] Jones-Rhoades, M.W., Bartel, D.P. and Bartel, B. (2006) MicroRNAs and Their Regulatory Roles in Plants. Annual Review of Plant Biology, 57, 19-53.
https://doi.org/10.1146/annurev.arplant.57.032905.105218
[54] Jones-Rhoades, M.W. and Bartel, D.P. (2004) Computational Identification of Plant Micrornas and Their Targets, Including a Stress-Induced Mirna. Molecular Cell, 14, 787-799.
https://doi.org/10.1016/j.molcel.2004.05.027
[55] Sunkar, R. and Zhu, J.K. (2004) Novel and Stress-Regulated Micrornas and Other Small Rnas from Arabidopsis. Plant Cell, 16, 2001-2019.
https://doi.org/10.1105/tpc.104.022830
[56] Mallory, A.C. and Vaucheret, H. (2006) Functions of Micrornas and Related Small Rnas in Plants. Nature Genetics, 386, S31-S36.
https://doi.org/10.1038/ng0706-850b
[57] Sunkar, R., Li, Y.F. and Jagadeeswaran, G. (2012) Functions of Micrornas in Plant Stress Responses. Trends Plant Science, 17, 196-203.
https://doi.org/10.1016/j.tplants.2012.01.010
[58] Davey, M.W., Gudimella, R., Harikrishna, J.A., et al. (2013) A Draft Musa balbisiana Genome Sequence for Molecular Genetics in Polyploid, Inter- and Intra-Specific Musa Hybrids. BMC Genomics, 14, 683-703.
https://doi.org/10.1186/1471-2164-14-683
[59] 宋长年, 贾启东, 王晨, 等. 32种果树MicroRNA的生物信息学预测与分析[J]. 园艺学报, 2010, 37(6): 869-879.
[60] 叶可勇, 陈瑶, 李瑞梅, 等. 小果野蕉MicroRNAs及其靶基因的生物信息学预测[J]. 热带生物学报, 2012, 3(3): 222-227.
[61] Chai, J., Feng, R.J., Shi, H.R., et al. (2015) Bioinformatic Identification and Expression Analysis of Banana MicroRNAs and Their Targets. PLoS One, 10, e0123083.
https://doi.org/10.1371/journal.pone.0123083
[62] Bi, F.C., Meng, X.C., Ma, C., et al. (2015) Identification of Mirnas Involved in Fruit Ripening in Cavendish Bananas by Deep Sequencing. BMC Genomics, 16, 776-790.
https://doi.org/10.1186/s12864-015-1995-1
[63] Ghag, S.B., Shekhawat, U.K.S. and Ganapathi, T.R. (2015) Small RNA Profiling of Two Important Cultivars of Banana and Overexpression of MiRNA156 in Transgenic Banana Plants. PLoS One, 10, e0127179.
https://doi.org/10.1371/journal.pone.0127179
[64] Wang, J.Y., Liu, J.H., Jia, C.H., et al. (2016) Cold Stress Responsive Micrornas and Their Targets in Musa Balbisiana. Frontiers of Agricultural Science and Engineering, 3, 335-345.
https://doi.org/10.15302/J-FASE-2016121
[65] 陈蔚. 巴西香蕉(Musa AAA Cavendish cv. Brazil)薄片组织的EMS诱变及其抗寒, 抗病再生植株的筛选[D]: [硕士学位论文]. 广州: 中山大学, 2007.
[66] 张建斌, 徐碧玉, 金志强, 等. 一种抗寒香蕉种质的筛选方法[P]. 中国专利, CN103651149A. 2014-03-26.
[67] Shekhawat, U.K., Srinivas, L. and Ganapathi, T.R. (2011) MusaDHN-1, a Novel Multiple Stress-Inducible Sk3-Type Dehydrin Gene, Contributes Affirmatively to Drought- and Salt-Stress Tolerance in Banana. Planta, 234, 915-932.
https://doi.org/10.1007/s00425-011-1455-3
[68] 刘凯, 胡春华, 杜发秀, 等. 东莞大蕉超表达拟南芥CBF1基因及其抗寒性检测[J]. 中国农业科学, 2012, 45(8): 1653-1660.
[69] 韩丽晓, 张治平, 李茂富, 等. YHem1基因转化香蕉提高植株抗冷性研究[J]. 热带作物学报, 2014, 35(9): 1663-1670.