基于改进模板匹配的晶圆划切算法
Algorithm for Wafer Slicing Based on Improved Template Matching
DOI: 10.12677/JISP.2017.63017, PDF, HTML, XML,  被引量 下载: 1,512  浏览: 4,272  国家自然科学基金支持
作者: 高晨舒*, 翟 锐, 薛 健, 吕 科:中国科学院大学工程科学学院,北京
关键词: 模板匹配几何特征相似性度量图像金字塔Template Matching Geometric Features Similarity Measures Function Image Pyramid Layer
摘要: 当前国内晶圆自动划切的工业应用中,主要采用基于灰度的模板匹配方法,但其计算量大、划切效率较低。本文提出一种改进的基于几何边缘的模板匹配算法,通过Canny边缘检测生成合适的边缘模板,计算模板边缘曲线的梯度方向作为匹配信息进行相似度计算,采用相似度阈值判断优化搜索策略,然后在图像金字塔最顶层进行粗遍历匹配获得潜在匹配目标,逐层匹配直到最底层,以达到对传统的几何模版匹配算法进行加速的目的。实验表明,该方法具有较高的鲁棒性,对于目标均匀或非均匀变化的光照、部分遮挡的情况可以得到良好的匹配效果,而且算法在保证精度的同时可以满足实时性要求,适用于晶圆图像自动划切的工业应用。
Abstract: Nowadays the domestic industrial applications of wafer automatic slicing mainly adopt gray-based template matching method. However, its calculation is quite time-consuming with low slicing efficiency. This paper proposes an improved template matching algorithm based on geometric edge to achieve the goal of accelerating the traditional algorithm. It generates appropriate edge template by Canny edge detection; calculates the gradient direction of template edge curve, which is used to calculate similarity as matching information; optimizes the searching strategy by using the similarity threshold determination. Then, the rough traversal matching is implemented at the top layer of the image pyramid and the matching process continues layer by layer until the bottom. The result of experiment shows that the algorithm proposed in this paper performs high robustness, which can obtain good matching result under different conditions of objectives, including uniform or non-uniform illumination and partial occlusion. Besides, it meets the real-time requirement while the accuracy is ensured, which can be applied to practical industry of automatic wafer image slicing.
文章引用:高晨舒, 翟锐, 薛健, 吕科. 基于改进模板匹配的晶圆划切算法[J]. 图像与信号处理, 2017, 6(3): 139-146. https://doi.org/10.12677/JISP.2017.63017

参考文献

[1] 马金奎, 等. 机器视觉测试系统[J]. 工具技术, 2004(9): 129-132.
[2] 杨云龙, 刘金荣. 全自动划片机自动对准技术的研究[J]. 电子工业专业设备, 2004, 100(3): 47.
[3] 王明权, 王宏智. 全自动划片机的关键技术研究[J]. 电子工业专用设备, 2007, 145: 31-32.
[4] 汪宏昇, 史铁林. 高精密机器视觉对准系统的研究与设计[J]. 光学技术, 2004, 30(2): 235.
[5] http://baike.baidu.com/view/1345922.html
[6] Li, Y., Zhang, X.D. and Bao, Y.L. (2012) Method Based on Feature Template Matching to Identify Special Icons in Map. Journal of Electronic Measurement and Instrument, 26, 605-609.
[7] 王静, 王海亮, 向茂生, 等. 基于非极大值抑制的圆目标亚像素中心定位[J]. 仪器仪表学报, 2012, 33(7): 1460- 1468.
[8] 张浩鹏, 王宗义. 基于灰度方差和边缘密度的车牌定位算法[J]. 仪器仪表学报, 2011, 32(5): 1095-1102.
[9] 傅卫平, 秦川, 刘佳, 等. 基于SIFT算法的图像目标匹配与定位[J]. 仪器仪表学报, 2011, 32(1): 163-169.
[10] Huttenlocher, D.P., Klanderman, G.A. and Rucklidge, J. (1993) Comparing Images Using the Hausdorff Distance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 15, 850-863.
https://doi.org/10.1109/34.232073
[11] Ulrich, M., Steger, C. and Baumgartner, A. (2003) Real-Time Object Recognition Using a Modified Generalized Hough Transform. Pattern Recognition, 36, 2557-2570.
https://doi.org/10.1016/S0031-3203(03)00169-9
[12] Paramanand, C. and Rajagopalan, A.N. (2010) Efficient Geometric Matching with Higher-Order Features. Optical Society of America, 27, 739-748.
https://doi.org/10.1364/JOSAA.27.000739
[13] Brown, L.G. (1992) A Survey of Image Registration Techniques. Department of Computer Science, Columbia University, New York.
[14] Zitova, B. and Flusser, J. (2003) Image Registration Methods: A Survey. Image and Vision Computing, 23-34.
[15] Shark, L.K., Kurekin, A.A. and Matuszewski, B.J. (2007) Development and Evaluation of Fast Branch-and-Bound Algorithm for Feature Matching Based on Line Segments. Pattern Recognition, 40, 1432-1450.
https://doi.org/10.1016/j.patcog.2006.10.022
[16] 杨通钰, 彭国华. 基于NCC的图像匹配快速算法[J]. 现代电子技术, 2010(22): 107-109.
[17] 黄真宝, 陈阳. 图像匹配中NCC算法的一种快速实现方法[J]. 信息化研究, 2011(4): 48-52.