AAM  >> Vol. 6 No. 4 (July 2017)

    Segmented Adomian Approximate Solution of Heterogeneous Aquifer Model of Groundwater Flow

  • 全文下载: PDF(431KB) HTML   XML   PP.435-441   DOI: 10.12677/AAM.2017.64051  
  • 下载量: 1,067  浏览量: 1,618  


温颖,银山:内蒙古工业大学理学院,内蒙古 呼和浩特

分段Adomian算法偏微分方程地下水流区域上的异质含水层模型Segmented Adomian Algorithm Partial Differential Equation Modeling of the Heterogeneous Aquifer



Based on the Adomian decomposition method and the Taylor formula,a segmented Adomian approximate solution of the heterogeneous aquifer model on the triangular groundwater flow region is provided. A new Adomain algorithm is provided for (initial) boundary value problem of the second order partial differential equation on the triangular region. 

温颖, 银山. 地下水流区域上的异质含水层模型的分段Adomian近似解[J]. 应用数学进展, 2017, 6(4): 435-441. https://doi.org/10.12677/AAM.2017.64051


[1] Bluman, G.W. and Kumei, S. (1989) Symmetries and Differential Equations. Springer-Verlag, New York.
[2] Yun, Y.S. and Temuer, C.L. (2015) Classical and Nonclassical Symmetry Classifications of Nonlinear Wave Equation with Dissipation. Applied Mathematics and Mechanics (English Edition), 36, 365-378.
[3] Adomian, G. (1988) A Review of the Decomposition Method in Applied Mathematics. Journal of Mathematical Analysis and Applications, 135, 501-544.
[4] He, J.H. (2000) A Coupling Method of a Homotopy Technique and a Perturbation Technique for Non-Linear Problems. International Journal of Non-Linear Mechanics, 35, 37-43.
[5] Yun, Y.S. and Temuer, C.L. (2015) Application of the Homotopy Perturbation Method for the Large Deflection Problem of a Circular Plate. Applied Mathematical Modelling, 39, 1308-1316.
[6] Liao, S.J. (1992) The Proposed Homotopy Analysis Technique for the Solution of Nonlinear Problems. Ph.D. Thesis, Shanghai Jiao Tong University, Shang Hai.
[7] Fan, E.G. (2000) Extended Tanh-Function Method and Its Applications to Nonlinear Equations. Physics Letters A, 277, 212-220.
[8] Yun, Y.S. and Temuer, C.L. (2011) A Further Improved Tanh Method and New Traveling Wave Solutions of 2D-KdV Equation. Journal of Inner Mongolia University (Natural Science Edition), 42, 604-609.
[9] Duan, J.S. (2010) Recurrence Triangle for Adomian Polynomials. Applied Mathematics and Computation, 216, 1235-1241.
[10] Duan, J.S. (2011) Convenient Analytic Recurrence Algorithms for the Adomian Polynomials. Applied Mathematics and Computation, 217, 6337-6348.
[11] Cherruault, Y. (1989) Convergence of Adomian’s Method. Kybernetes, 18, 31-38.
[12] Wazwaz, A.M. (2002) A New Method for Solving Singular Initial Value Problem in the Second-Order Ordinary Differential Equations. Applied Mathematics and Computation, 128, 45-57.
[13] Lesnic, D. (2006) Blow-Up Solutions Obtained Using the Decompotion Method. Chaos, Solution & Fractals, 28, 776- 787.
[14] 朱永贵, 朝鲁. Adomian分解法在求解微分方程定解问题中的应用[J]. 内蒙古大学学报(自然科学版), 2004, 35(4): 381-385.
[15] Shidfar, A. and Garshasbi, M. (2009) A Weighted Algorithm Based on Adomian Decomposition Method for Solving a Special Class of Evolution Equations. Communications in Nonlinear Science and Numerical Simulation, 14, 1146- 1151.
[16] Patel, A. and Serrano, S.E. (2011) Decomposition Solution of Multidimensional Groundwater Equations. Journal of Hydrology, 397, 202-209.
[17] Yun, Y.S. Temuer, C.L. and Duan, J.S. (2014) A Segmented and Weighted Adomian Decomposition Algorithm for Boundary Value Problem of Nonlinear Groundwater Equation. Mathematical Methods in the Applied Sciences, 37, 2406-2418.