塔里木油田H9区块储层敏感性分析及钻井液体系优化研究
Analysis of Reservoir Sensitivity and Optimization of Drilling Fluid System in Block H9 of Tarim Oilfield
DOI: 10.12677/JOGT.2017.393030, PDF, HTML, XML, 下载: 1,567  浏览: 3,182  国家科技经费支持
作者: 邢向荣:中石油新疆油田分公司风城油田作业区地质研究所,新疆 克拉玛依
关键词: 敏感性分析损害机理储层保护钻井液体系优化塔里木油田Sensitivity Analysis Damage Mechanism Formation Protection Drilling Fluid System Optimization Tarim Oilfield
摘要: 针对塔里木油田H9区块钻井过程中存在的储层损害问题,采用黏土矿物分析、扫描电镜及压汞法等方法,分析掌握了目标区块储层地质特征,并结合储层敏感性试验评价,明确了储层潜在敏感性损害因素,揭示了储层损害机理。结果表明,H9区块储层黏土矿物含量为10%~20%,具有中高孔渗特征,非均质性较好,且存在潜在的强速敏和强水敏性损害。针对现场用钻井液体系存在的抑制性、润滑性及储层保护效果存在的不足,室内优化了一套综合性能优良的KCl-聚合醇储层保护钻井液体系。通过模拟储层动态损害试验评价可知,储层岩心渗透率恢复值可达85%以上。现场试验结果表明,KCl-聚合醇钻井液体系可较好地抑制泥页岩水化膨胀分散,有效避免了井眼缩径、起下钻遇阻等井下复杂情况发生,保障了钻井施工高效、安全,且储层保护效果良好。
Abstract: In allusion to the problem of formation damage in drilling of Block H9 in Tarim Oilfield, various methods including clay mineral analysis, SEM and mercury intrusion were used for analyzing the geological characteristics in the target zone, and combined with the evaluation of reservoir sensitivity test, the potential sensitivity damage factors and damage mechanism were determined. Results show that the clay mineral content is 10% to 20% in the block. It has the feature of middle- high porosity and permeability with obvious heterogeneous and there potentially exist strong velocity and water sensitivities. In consideration of the inhibition and lubrication property in the drilling fluid system and poor effect of formation protection, a set of good performance KCl-po- lyalcohol drilling fluid system is optimized in laboratory. It is known in the dynamic test on reservoir simulation that the core permeability recovery value can be up to 85%. Field test result shows that KCl-polyalcohol drilling fluid system can be used for better control of shale hydration and expansion, effective avoiding the downhole complexity such as hole shrinkage stuck in tripping, it ensures a high efficient and safe well drilling and a good formation protection effect is obtained.
文章引用:邢向荣. 塔里木油田H9区块储层敏感性分析及钻井液体系优化研究[J]. 石油天然气学报, 2017, 39(3): 69-77. https://doi.org/10.12677/JOGT.2017.393030

参考文献

[1] 赵宽志, 张丽娟, 郑多明, 等. 塔里木盆地缝洞型碳酸盐岩油气藏储量计算方法[J]. 石油勘探与开发, 2015, 42(2): 251-256.
[2] 杨鹏飞, 张丽娟, 郑多明, 等. 塔里木盆地奥陶系碳酸盐岩大型缝洞集合体定量描述[J]. 岩性油气藏, 2013, 25(6): 89-94.
[3] 徐会林, 王新海, 魏少波, 等. 四川盆地高石梯-磨溪区块震旦系储层敏感性实验评价[J]. 岩性油气藏, 2015, 27(2): 13-17.
[4] 樊世忠, 鄂捷年, 周大晨, 等. 钻井液完井液及油气层保护技术[M]. 东营: 石油大学出版社, 1996.
[5] 黄维安, 邱正松, 岳星辰, 等. 页岩气储层损害机制及保护水基钻完井液技术[J]. 中国石油大学学报(自然科学版), 2014, 38(3): 99-105.
[6] 王海军, 邓媛, 段春节, 等. 大牛地气田储层伤害研究[J]. 岩性油气藏, 2010, 22(4): 125-129.
[7] 刘锋报, 邵海波, 周志世, 等. 哈拉哈塘油田硬脆性泥页岩井壁失稳机理及对策[J]. 钻井液与完井液, 2015, 32(1): 38-41.
[8] 欧阳传湘, 邓志颖, 张伟. 轮古7井区三叠系砂岩储层黏土矿物特征及敏感性损害研究[J]. 岩性油气藏, 2011, 23(5): 111-114.
[9] 覃小丽, 李荣西, 席胜利, 等. 鄂尔多斯盆地东部地区太原组储层黏土矿物特征及成因[J]. 岩性油气藏, 2016, 28(1): 49-57.
[10] Parekh, B. and Sharma, M.M. (2004) Cleanup of Water Blocks in Depleted Low-Permeability Reservoirs. SPE 89837.
https://doi.org/10.2118/89837-ms
[11] 杨枝. 塔中地区裂缝性碳酸盐岩储层保护技术研究[D]: [博士学位论文]. 北京: 中国地质大学(北京), 2010.
[12] 宋涛, 张浩, 魏武. 稠油油藏钻井液储层保护技术[J]. 钻采工艺, 2010, 33(3): 99-100.
[13] 李云, 祁利褀, 胡作维, 等. 准噶尔盆地阜东斜坡中侏罗统头屯河组储层敏感性特征[J]. 岩性油气藏, 2014, 26(1): 52-57.
[14] 刘大伟, 康毅力, 何健, 等. 碳酸盐岩储层水敏性实验评价及机理探讨[J]. 天然气工业, 2007, 27(2): 32-34.
[15] Hooshmandkoochi, A., Zaferanieh, M. and Malekzaden, A. (2007) First Application of Under-Balanced Drilling in Fractured Carbonate Formations of Iranian Oil Fields Leads to Operational Success and Cost Savings. SPE 105536.
[16] 蒋官澄, 吴雄军, 王晓军, 等. 确定储层损害预测评价指标权值的层次分析法[J]. 石油学报, 2011, 32(6): 1037- 1041.
[17] 唐洪明, 龚小平, 唐浩轩, 等. 页岩敏感性损害评价方法及损害机理[J]. 中南大学学报(自然科学版), 2016, 47(4): 1227-1236.
[18] 王洪伟, 黄治华, 李新建, 等. “适度抑制”及“储层保护”钻井液的研制及应用[J]. 断块油气田, 2014, 21(6): 797- 801.
[19] 赵亚宁, 陈金霞, 卢淑芹, 等. 南堡中深层复杂岩性地层井壁失稳机理及技术对策[J]. 钻井液与完井液, 2015, 32(5): 41-45.
[20] 郭明红, 田野, 贾东民, 等. 高44平2井保护储层防塌钻井液的研究与应用[J]. 特种油气藏, 2012, 19(3): 147-150.