AAS  >> Vol. 5 No. 3 (July 2017)

    相互作用暗能量模型的研究现状
    Status of the Study of Interacting Dark Energy Models

  • 全文下载: PDF(487KB) HTML   XML   PP.21-27   DOI: 10.12677/AAS.2017.53004  
  • 下载量: 766  浏览量: 2,322   科研立项经费支持

作者:  

郭娟娟:东北大学理学院,辽宁 沈阳;
宋佳霖:大连市育明高中,辽宁 大连;
李思哲,南星宇:东北育才学校(高中部),辽宁 沈阳

关键词:
相互作用暗能量观测限制大尺度不稳定性参数化后弗里德曼方法Interacting Dark Energy Observational Constraints Large-Scale Instability Parametrized Post-Friedmann Approach

摘要:

本文简要介绍了相互作用暗能量模型研究的最新进展。首先介绍了几种目前比较流行的相互作用暗能量模型,接着详细分析了国内外在该领域的研究现状及发展动态。其中,针对大尺度不稳定性问题,本文着重强调了用来处理相互作用暗能量宇宙学扰动的参数化后弗里德曼(parametrized post-Friedmann,简称PPF)方法。研究表明该方法能够成功地在相互作用暗能量模型全部参数空间中消除其大尺度不稳定性问题。

In this paper, we briefly introduce the present status of the study of interacting dark energy (IDE) models. Firstly, we introduce several currently popular models of dark energy interacting with dark matter. Then, we analyze the research status in this field and development tendency at home and abroad. Note here that, in order to solve the large-scale instability of IDE, we describe the para-metrized post-Friedmann (PPF) approach, which could handle the cosmological perturbations of IDE. It has been proved that the PPF framework of IDE can successfully solve the large-scale insta-bility issue in the whole parameter space.

文章引用:
郭娟娟, 宋佳霖, 李思哲, 南星宇. 相互作用暗能量模型的研究现状[J]. 天文与天体物理, 2017, 5(3): 21-27. https://doi.org/10.12677/AAS.2017.53004

参考文献

[1] Wang, B., Abdalla, E., Atrio-Barandela, F. and Pavón, D. (2016) Dark Matter and Dark Energy Interactions: Theoretical Challenges, Cosmological Implications and Observational Signatures. Reports on Progress in Physics, 79, 096901.
https://doi.org/10.1088/0034-4885/79/9/096901
[2] Amendola, L. (2000) Coupled Quintessence. Physical Review D, 62, 043511.
https://doi.org/10.1103/PhysRevD.62.043511
[3] Li, M., Lin, C. and Wang, Y. (2008) Some Issues Concerning Holographic Dark Energy. JCAP, 0805, 023.
https://doi.org/10.1088/1475-7516/2008/05/023
[4] Wang, S. and Zhang, Y. (2008) Alleviation of Cosmic Age Problem in In-teracting Dark Energy Model. Physical Review B, 669, 201-205.
https://doi.org/10.1016/j.physletb.2008.09.055
[5] Zhang, X. (2005) Statefinder Diagnostic for Coupled Quintessence. Physical Review B, 611, 1-7.
https://doi.org/10.1016/j.physletb.2005.02.022
[6] Amendola, L. and Tocchini-Valentini, D. (2001) Stationary Dark Energy: The Present Universe as a Global Attractor. Physical Review D, 64, 043509.
https://doi.org/10.1103/PhysRevD.64.043509
[7] Amendola, L. and Tocchini-Valentini, D. (2002) Baryon Bias and Structure Formation in an Accelerating Universe. Physical Review D, 66, 043528.
https://doi.org/10.1103/PhysRevD.66.043528
[8] Comelli, D., Pietroni, M. and Riotto, A. (2003) Dark Energy and Dark Matter. Physical Review B, 571, 115-120.
https://doi.org/10.1016/j.physletb.2003.05.006
[9] Zhang, X. (2005) Coupled Quintessence in a Power-Law Case and the Cos-mic Coincidence Problem. Modern Physics Letters A, 20, 2575.
https://doi.org/10.1142/S0217732305017597
[10] Amendola, L. (2003) Acceleration at z > 1? Monthly Notices of the Royal Astronomical Society, 342, 221-226.
https://doi.org/10.1046/j.1365-8711.2003.06540.x
[11] Pietroni, M. (2003) Brane Worlds and the Cosmic Coincidence Problem. Physical Review D, 67, Article ID: 103523.
https://doi.org/10.1103/PhysRevD.67.103523
[12] Franca, U. and Rosenfeld, R. (2004) Age Constraints and Fine Tuning in VAMP Models. Physical Review D, 69, Article ID: 063517.
https://doi.org/10.1103/PhysRevD.69.063517
[13] Ade, P.A.R., et al. (2016) [Planck Collaboration]. Planck 2015 Results. XIV. Dark Energy and Modified Gravity. Astronomy & Astrophysics, 594, A14.
https://doi.org/10.1051/0004-6361/201525814
[14] Guo, Z.K. and Zhang, Y.Z. (2005) Interacting Phantom Energy. Physi-cal Review D, 71, Article ID: 023501.
https://doi.org/10.1103/PhysRevD.71.023501
[15] Guo, Z.K., Cai, R.G. and Zhang, Y.Z. (2005) Cosmological Evolution of Interacting Phantom Energy with Dark Matter. Journal of Cosmology and Astroparticle Physics, 2005, 002.
[16] Cai, R.G. and Wang, A.Z. (2005) Cosmology with Interaction between Phantom Dark Energy and Dark Matter and the Coincidence. Journal of Cosmology and Astroparticle Physics, 2005, 002.
[17] Wu, P.X. and Yu, H.W. (2005) Avoidance of Big Rip in Phantom Cosmology by Gravita-tional Back Reaction. Nuclear Physics B, 727, 355.
[18] Wei, H. and Cai, R.G. (2005) K-Chameleon and the Coincidence Problem. Physical Review D, 71, Article ID: 043504.
https://doi.org/10.1103/PhysRevD.71.043504
[19] Valiviita, J., Maartens, R. and Majerotto, E. (2010) Observational Constraints on an Interacting Dark Energy Model. Monthly Notices of the Royal Astronomical Society, 402, 2355.
https://doi.org/10.1111/j.1365-2966.2009.16115.x
[20] Yang, T., Guo, Z.K. and Cai, R.G. (2015) Reconstructing the Interaction be-tween Dark Energy and Dark Matter Using Gaussian Processes. Physical Review D, 91, Article ID: 123533.
https://doi.org/10.1103/PhysRevD.91.123533
[21] Cai, R.G. and Su, Q. (2010) On the Dark Sector Interactions. Physical Review D, 81, Article ID: 103514.
https://doi.org/10.1103/PhysRevD.81.103514
[22] Li, Y.H. and Zhang, X. (2011) Running Coupling: Does the Coupling be-tween Dark Energy and Dark Matter Change Sign during the Cosmological Evolution? The European Physical Journal C, 71, 1700.
https://doi.org/10.1140/epjc/s10052-011-1700-8
[23] Wei, H. (2010) Revisiting the Cosmological Constraints on the Interacting Dark Energy Models. Physics Letters B, 691, 173.
[24] Xu, L. (2013) Constraints on the Holographic Dark Energy Model from Type IA Supernovae, WMAP7, Baryon Acoustic Oscillation and Red Shift-Space Distortion. Physical Review D, 87, Article ID: 043525.
https://doi.org/10.1103/PhysRevD.87.043525
[25] Yang, W., Xu, L., Wang, Y. and Wu, Y. (2014) Constraints on a Decom-posed Dark Fluid with Constant Adiabatic Sound Speed by Jointing the Geometry Test and Growth Rate after Planck Data. Physical Review D, 89, Article ID: 043511.
https://doi.org/10.1103/PhysRevD.89.043511
[26] Li, Y.H., Zhang, J.F. and Zhang, X. (2014) Exploring the Full Parameter Space for an Interacting Dark Energy Model with Recent Observations Including Red Shift-Space Distor-tions: Application of the Parametrized Post-Friedmann Approach. Physical Review D, 90, Article ID: 123007.
https://doi.org/10.1103/PhysRevD.90.123007
[27] He, J.H., Wang, B. and Abdalla, E. (2009) Stability of the Curvature Pertur-bation in Dark Sectors’ Mutual Interacting Models. Physics Letters B, 671, 139.
[28] He, J.H., Wang, B. and Jing, Y.P. (2009) Effects of Dark Sectors’ Mutual Interaction on the Growth of Structures. JCAP, 2009, 030.
[29] Valiviita, J., Majerotto, E. and Maartens, R. (2008) Instability in Interacting Dark Energy and Dark Matter Fluids. JCAP, 2008, 020.
[30] Zhang, X. (2017) Probing the Interaction between Dark Energy and Dark Matter with the Parametrized Post-Friedmann Approach. Science China Physics, Mechanics and As-tronomy, 60, Article ID: 050431.
https://doi.org/10.1007/s11433-017-9013-7
[31] Li, Y.H., Zhang, J.F. and Zhang, X. (2014) Parametrized Post-Friedmann Framework for Interacting Dark Energy. Physical Review D, 90, Article ID: 063005.
https://doi.org/10.1103/PhysRevD.90.063005
[32] Li, Y.H., Zhang, J.F. and Zhang, X. (2016) Testing Models of Vacuum En-ergy Interacting with Cold Dark Matter. Physical Review D, 93, Article ID: 023002.
https://doi.org/10.1103/PhysRevD.93.023002
[33] Li, Y.H. and Zhang, X. (2014) Large-Scale Stable Interacting Dark Energy Model: Cosmological Perturbations and Observational Constraints. Physical Review D, 89, Article ID: 083009.
https://doi.org/10.1103/PhysRevD.89.083009
[34] Guo, Y.Y., Li, Y.H., Zhang, J.F. and Zhang, X. (2017) Weighing Neutrinos in the Scenario of Vacuum Energy Interacting with Cold Dark Matter: Application of the Parameterized Post-Friedmann Approach. JCAP, 2017, 040.