AAM  >> Vol. 6 No. 4 (July 2017)

    一类四维超混沌系统的Hopf分岔研究
    Research on Hopf Bifurcation of a 4D Hyperchaotic System

  • 全文下载: PDF(625KB) HTML   XML   PP.474-480   DOI: 10.12677/AAM.2017.64056  
  • 下载量: 580  浏览量: 3,894   国家自然科学基金支持

作者:  

陈玉明:广东技术师范学院,数学与系统科学学院,广东 广州

关键词:
Lorenz型系统超混沌Hopf分岔Lorenz-Type System Hyperchaos Hopf Bifurcation

摘要:

针对一类四维Lorenz型超混沌系统,基于中心流形及Hopf分岔相关理论,研究了该系统在原点平衡点处发生的Hopf分岔行为,得到了系统在Hopf分岔点的特性,包括分岔产生周期解的条件、周期解的分岔方向及稳定性等,并借助数值模拟验证了理论分析的正确性。

This paper proposes a 4D Lorenz-type hyperchaotic system. Based on the center manifold theory and Hopf bifurcation theory, the Hopf bifurcation at origin of this system is investigated; complete mathematical characterizations for 4D Hopf bifurcation, including the direction of Hopf bifurcation and the stability of bifurcating period solutions are rigorously derived and studied, and numerical simulations are performed to justify the theoretical analysis.

文章引用:
陈玉明. 一类四维超混沌系统的Hopf分岔研究[J]. 应用数学进展, 2017, 6(4): 474-480. https://doi.org/10.12677/AAM.2017.64056

参考文献

[1] Lorenz, E.N. (1963) Deterministic Non-Periodic Flow. Journal of the Atmospheric Sciences, 20, 130-141.
https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
[2] Hirsh, M.W., Smale, S. and Devaney, R.L. (2007) Differential Equations, Dynamical Systems, and an Introduction to Chaos. Elsevier Academic Press, New York.
[3] Shilnikov, L.P., Shilnikov, A.L., Turaev, D.V., et al. (2001) Methods of Qualitative Theory in Nonlinear Dynamics. World Scientific, Singapore.
https://doi.org/10.1142/4221
[4] Wiggins, S. (1990) Introduction to Applied Nonlinear Dynamical Systems and Chaos. 2nd Edition, Springer-Verlag, New York.
https://doi.org/10.1007/978-1-4757-4067-7
[5] Yang, Q. and Chen. Y. (2014) Complex Dynamics in the Unified Lorenz-Type Systems. International Journal of Bifurcation and Chaos, 24, Article ID: 1450055.
https://doi.org/10.1142/s0218127414500552
[6] Chen, Y. and Yang, Q. (2014) Dynamics of a Hyperchaotic Lorenz-Type System. Nonlinear Dynamics, 77, 569-581.
https://doi.org/10.1007/s11071-014-1318-0
[7] 陈玉明. 基于Lorenz型系统的四维超混沌系统的复杂动力学研究[D]: [博士学位论文]. 广州: 华南理工大学, 2014.
[8] 刘永建, 程俊芳. 四维超混沌Lorenz系统的Hopf分岔[J]. 河南大学学报, 2013, 43(1): 11-16.
[9] Chen, Y. (2017) The Existence of Homoclinic Orbits in a 4D Lorenz-Type Hyperchaotic System. Nonlinear Dynamics, 87, 1445-1452.
https://doi.org/10.1007/s11071-016-3126-1