IJE  >> Vol. 6 No. 3 (August 2017)

    Analysis on Leaf Construction Cost and the Invasive Potential of Alien Sonneratia caseolaris in Shenzhen Bay

  • 全文下载: PDF(603KB) HTML   XML   PP.131-139   DOI: 10.12677/IJE.2017.63015  
  • 下载量: 404  浏览量: 1,305   国家自然科学基金支持


杜 欢:广东内伶仃福田国家级自然保护区管理局,广东 深圳;
李凤兰:深圳大学生命与海洋科学学院,深圳市海洋生物资源与生态环境重点实验室,广东 深圳;香港城市大学深圳研究院福田–城大红树林研发中心,广东 深圳

叶片建成成本入侵潜力外来红树海桑红树林Leaf Construction Cost Invasive Potential Alien Mangrove Species Sonneratia caseolaris Mangrove


本文对深圳湾外来红树海桑(Sonneratia caseolaris)的叶片建成成本CC和其它特征指标进行分析,结果表明:海桑具有最低的叶片建成成本和最高的比叶面积SLA,其单位质量建成成本CCM比本地红树低6.3%,单位面积建成成本CCA比本地红树低32.2%;SLA却比本地红树高38.6%。此外,海桑的叶片热值和碳含量也均低于本地红树,而氮含量却比本地红树高。低CC、热值和碳含量以及高的SLA和氮含量导致海桑具有比本地红树更高的树高和更大的胸围,使两者分别比本地红树高50%和125.6%。因此,低CC和高SLA使外来红树海桑在深圳湾的入侵潜力增加,其入侵性不可忽视。

Leaf construction cost (CC) and other growth traits of alien Sonneratia caseolaris in Shenzhen Bay were studied to evaluate the invasive potential of this alien mangrove species after introduced to Shenzhen, their new habitat. Results showed that the CC of S. caseolaris was the lowest, while the specific leaf area (SLA) was just the opposite. CC per unit mass (CCM) and CC per unit area (CCA) were 6.3% and 38.6%, respectively lower than those of native mangroves, while SLA was 38.6%, higher than the natives. In addition, leaf caloric values and C concentrations of S. caseolaris were lower than the native mangroves significantly while the N concentrations were the opposite (P < 0.05). Lower CC, caloric values and C concentrations but higher SLA and N concentrations led this alien mangrove species to grow higher and bigger than the natives (50% and 125.6% in height and chest circumference, respectively). Therefore, lower CC but Higher SLA would add the invasive potentials to S. caseolaris and the invasiveness of this alien mangrove species should not be neglected.

杜欢, 李凤兰. 深圳湾外来红树海桑叶片建成成本及其入侵潜力分析[J]. 世界生态学, 2017, 6(3): 131-139. https://doi.org/10.12677/IJE.2017.63015


[1] Elton, C.S. (1958) The Ecology of Invasions by Animals and Plants. Methuen, London.
[2] 王伯荪, 王勇军, 廖文波, 等. 外来杂草薇甘菊的入侵生态及其治理[M]. 北京: 科学出版社, 2004.
[3] Enserink, M. (1999) Predicting Invasions: Biological Invaders Sweep in. Science, 285, 1834-1836.
[4] Mack, R.N., Simberloff, D., Lonsdale, W.M., et al. (2000) Biotic Invasions: Causes, Epidemiology Global Consequences and Control. Ecological Applications, 10, 689-710.
[5] Pimentel, D., Lach, L., Zuniga, R., et al. (2000) Environmental and Economic Costs of Non-Indigenous Species in the United States. Bioscience, 50, 53-65.
[6] Lugo, A.E. (1998) Mangrove Forests: A Tough System to Invade but an Easy One to Rehabilitate. Marine Pollution Bulletin, 37, 427-430.
[7] Dukes, J.S. and Mooney, H.A. (1999) Does Global Change Increase the Success of Biological Invaders? Trends in Ecology & Evolution, 14, 135-139.
[8] Tam, N.F.Y., Wong, Y.S., Lan, C.Y., et al. (1998) Litter Production and Decomposition in a Subtropical Mangrove Swamp Receiving Wastewater. Journal of Experimental Marine Biology and Ecology, 226, 1-18.
[9] Chen, L.Z., Tam, N.F.Y., Huang, J.H., et al. (2008) Comparison of Ecophysiological Characteristics between Introduced and Indigenous Mangrove Species in China. Estuarine Coastal and Shelf Science, 79, 644-652.
[10] Li, F.L., Yang, Q., Zan, Q.J., et al. (2011) Differences in Leaf Construction Cost between Alien and Native Mangrove Species in Futian, Shenzhen, China: Implications for Invasiveness of Alien Species. Marine Pollution Bulletin, 62, 1957-1962.
[11] 宋莉英. 华南地区主要入侵植物的能量利用策略研究[D]: [博士学位论文]. 广州: 中山大学, 2007.
[12] 林益明, 柯莉娜, 王湛昌, 等. 深圳福田红树林区7种红树植物叶热值的季节变化[J]. Acta Oceanologica Sinica, 2002, 24(3): 112-118.
[13] Williams, K., Percival, F., Merino, J., et al. (1987) Estimation of Tissue Construction Cost from Heat of Combustion and Organic Nitrogen Content. Plant, Cell and Environment, 10, 725-734.
[14] Penning de Vries, F.W.T., Brunsting, A.H.M. and Van Laar, H.H. (1974) Products, Requirements and Efficiency of Biosynthesis: A Quantitative Approach. Journal of Theoretical Biology, 45, 339-377.
[15] Reich, P.B., Walters, M.B. and Ellsworth, D.S. (1997) From Tropics to Tundra: Global Convergence in Plant Functioning. Proceedings of the National Academy of Sciences, 94, 13730-13734.
[16] Lake, J.C. and Leishman, M.R. (2004) Invasion Success of Exotic Plants in Natural Ecosystems: The Role of Disturbance, Plant Attributes and Freedom from Herbivores. Biological Conservation, 117, 215-226.
[17] Hamilton, M.A., Murray, B.R., Cadotte, M.W., et al. (2005) Life-History Correlates of Plant Invasiveness at Regional and Continental Scales. Ecology Letters, 10, 1066-1074.
[18] 高凯, 谢中兵, 徐苏铁, 等. 内蒙古锡林河流域羊草草原15种植物热值特征[J]. 生态学报, 2012, 32(2): 588-594.
[19] Griffin, K.L., Winner, W.E. and Strain, B.R. (1996) Construction Cost of Loblolly and Ponderosa Pine Leaves Grown with Varying Carbon and Nitrogen Availability. Plant, Cell and Environment, 19, 729-738.
[20] 薛利红, 杨林章, 范小晖. 基于碳氮代谢的水稻氮含量及碳氮比光谱估测[J]. 作物学报, 2006, 32(3): 430-435.
[21] Lu, W., Yang, S., Chen, L., et al. (2014) Changes in Carbon Pool and Stand Structure of a Native Subtropical Mangrove Forest after Inter-Planting with Exotic Species Sonneratia apetala. PLoS ONE, 9, e91238.
[22] Nagel, J.M., Huxman, T.E., Griffin, K.L., et al. (2004) CO2 Enrichment Reduce the Energetic Cost of Biomass Construction in an Invasive Desert Grass. Ecology, 85, 100-106.
[23] Baruch, Z. and Goldstein, G. (1999) Leaf Construction Cost, Nutrient Concentration, and Net CO2 Assimilation of Native and Invasive Species in Hawaii. Oecologia, 121, 183-192.