包覆型纳米零价铁去除水中镍(II)离子和三氯乙烯的研究
Research on Removal of Nickel (II) Ions and Trichloroethylene from Aqueous Solution by Coated Nano Zero-Valent Iron
DOI: 10.12677/WPT.2017.53006, PDF, HTML, XML, 下载: 1,501  浏览: 3,453  国家自然科学基金支持
作者: 张小霞:佛山市顺德区乐华陶瓷洁具有限公司,广东 佛山;成 岳, 樊文井:景德镇陶瓷大学材料科学与工程学院,江西 景德镇
关键词: 包裹型纳米零价铁镍离子(II)三氯乙烯去除率脱氯率Coated Nano Zero-Valent Iron Nickel (II) Trichloroethylene (TCE) Removal Rate Degradation Rate
摘要: 包覆型纳米零价铁去除镍(II)离子和三氯乙烯(TCE)的结果表明:Ni2+和TCE的去除率均随着包覆型纳米零价铁的投加量增加而升高,随着溶液初始浓度的增加而降低。四种零价铁材料处理混合废水的能力依次为:NZVI < Agar-NZVI < CMC-NZVI < Starch-NZVI,包裹剂Agar、CMC、Starch对目标污染物的作用可以忽略。在混合废水中Ni2+和TCE浓度都为5 mg/L,包覆型纳米零价铁的加入量为1.5 g/L,温度为30℃,反应时间为2.5 h,Starch-NZVI对Ni2+和TCE的处理效果最好,其中Ni2+的去除率为99.38%,TCE的脱氯率为49.36%。
Abstract: Coated nano zero-valent iron removal of Nickel (II) ions and trichloroethylene (TCE) results showed that: The removal of nickel ions and TCE was better with higher dosage of nano zero-valent iron and lower initial concentration. Capacity of four kinds of zero-valent iron material handling wastewater was: NZVI < Agar-NZVI < CMC-NZVI < Starch-NZVI; effect of wrapped agent act on pollutants could be ignored. When Nickel (II) and TCE concentrations were 5 mg/L in the mixed wastewater, amount of Starch-NZVI was 1.5 g/L; temperature was 30˚C; reaction time was 2.5 h; Nickel (II)+ and TCE had best treatment effect, with Nickel (II) removal rate 99.38%, TCE degradation rate 49.36%.
文章引用:张小霞, 成岳, 樊文井. 包覆型纳米零价铁去除水中镍(II)离子和三氯乙烯的研究[J]. 水污染及处理, 2017, 5(3): 41-48. https://doi.org/10.12677/WPT.2017.53006

参考文献

[1] Lin, Y.H., Hsu, C.H., Wu, C.L., et al. (2009) Simultaneous Sorption of Lead and Chlorobenzene by Organobentonite. Chemosphere, 49, 1309-1315.
[2] Oyanedel-Craver, V.A., Fuller, M. and Smith, J.A. (2007) Simultaneous Sorption of Benzene and Heavy Metals onto Two Organoclays. Journal of Colloid and Interface Science, 309, 485-492.
[3] Wang, Q.P., Kuang, Y., Jin, X.Y., et al. (2014) Simultaneous Removal of Cu(Ⅱ) and Chlorobenzene from Aqueous Solution by CA-Ni/Fe Nanoparticles. Acta Scientiac Circum-stantiac, 34, 1228-1235.
[4] Jiao, C., Cheng, Y. and Fan, W.J. (2015) Synthesis of Agar Stabilized Nanoscale Zero-Valent Iron Particles and Removal Study of Hexavalent Chromium. International Journal of Environmental Science and Technology, 5, 1603-1612.
https://doi.org/10.1007/s13762-014-0524-0
[5] 董婷婷. CMC稳定化纳米Pd-Fe还原去除对硝基氯苯研究[M]. 广东: 华南理工大学, 2011.
[6] 冯丽, 葛小鹏, 王东升, 等. pH值对纳米零价铁吸附降解2,4-二氯苯酚的影响[J]. 环境科学, 2012, 33(1): 94-103.
[7] 任蓉. 包覆型纳米零价铁/厌氧体系在脱氯过程中其表面形态变化研究[M]. 广东: 华南理工大学, 2013.
[8] Ge, S.H., Wu, Z.J., Zhang, M.H., et al. (2006) Sulfolene Hydrogenation over an Amorphous Ni-B Alloy Catalyst on MgO. Industrial and Engineering Chemistry Research, 45, 2229-2234.
https://doi.org/10.1021/ie0512542
[9] Han, Y., Li, W., Zhang, M.H., et al. (2008) Catalytic Dechlorination of Monochlorobenzene with a New Type of Nanoscale Ni(B)/Fe(B) Bimetallic Catalytic Reductant. Chemosphere, 72, 53-58.
[10] Han, Z.T. and Lv, X.L. (2013) New Progress of Nano-Zero-Valent Iron Groundwater Remediation Technology. Hydrogeology and Engineering Geology, 40, 41-47.