多普勒观测值平滑伪距单点定位精度分析
Accuracy Analysis of Single Point Positioning Using Doppler Smoothed Pseudorange Observations
DOI: 10.12677/GST.2017.53018, PDF, HTML, XML, 下载: 1,687  浏览: 4,209  国家自然科学基金支持
作者: 张永林, 蔡昌盛, 孙清峰, 董州楠:中南大学地球科学与信息物理学院,湖南 长沙
关键词: 多普勒伪距多路径GPSDoppler Pseudorange Multipath GPS
摘要: GPS伪距观测值测量噪声大,易受多路径等误差影响,而多普勒观测值具有较好的观测精度且不受多路径误差的干扰。本文采用多普勒平滑伪距观测值进行单点定位解算。在有多路径误差和无多路径误差下分别进行实验,结果表明多普勒平滑伪距能有效改善单点定位的精度,在多路径环境下,东,北,高三个方向上的改善率分别为26%、30 % 和6%。
Abstract: The C/A code observations have large noise and are easily contaminated by multipath errors. By contrast, the Doppler values have good accuracy and are not disturbed by multipath. The Doppler smoothed pseudorange (DSPR) is used to improve the accuracy of pseudorange. Experiments were carried out in the multipath and multipath–free environments. Results show that the DSPR can improve the positioning accuracy. Especially in the multipath environment, the DSPR can improve the accuracy by 26%, 30% and 6% in east, north and up directions, respectively.
文章引用:张永林, 蔡昌盛, 孙清峰, 董州楠. 多普勒观测值平滑伪距单点定位精度分析[J]. 测绘科学技术, 2017, 5(3): 152-157. https://doi.org/10.12677/GST.2017.53018

参考文献

[1] 张小红, 郭博峰. 单站GPS测速在实时地震监测中的应用[J]. 地球物理学报, 2013, 56(6): 1928-1936.
[2] Yang, Y., Yue, X. and Dempster, A.G. (2015) GPS-Based Onboard Real-Time Orbit Determination for Leo Satellites Using Consider Kalman Filter. IEEE Transactions on Aerospace & Electronics Systems, 52, 769-777.
https://doi.org/10.1109/TAES.2015.140758
[3] Chen, H.W., Wang, H.S., Chiang, Y.T. and Chang, F.R. (2014) A New Coarse-Time GPS Positioning Algorithm Using Combined Doppler and Code-Phase Measurements. GPS Solutions, 18, 541-551.
https://doi.org/10.1007/s10291-013-0350-8
[4] Jing, S., Xu, B., Yong, L. and Sun, G. (2015) Doppler-Aided Rapid Positioning Method for Bds Receivers. Electronics Letters, 51, 2139-2141.
https://doi.org/10.1049/el.2015.1033
[5] Li, L., Zhong, J. and Zhao, M. (2011) Doppler-Aided GNSS Position Estimation with Weighted Least Squares. IEEE Transactions on Vehicular Technology, 60, 3615-3624.
https://doi.org/10.1109/TVT.2011.2163738
[6] Cheng, P. (1999) Remarks on Doppler-Aided Smoothing of Code Ranges. Journal of Geodesy, 73, 23-28.
https://doi.org/10.1007/s001900050214
[7] Zhou, Z. and Li, B. (2017) Optimal Doppler-Aided Smoothing Strategy for GNSS Navigation. GPS Solutions, 21, 197-210.
https://doi.org/10.1007/s10291-015-0512-y
[8] Zair, S., Hégarat-Mascle, S.L. and Seignez, E. (2016) Outlier Detection in GNSS Pseudo-Range/Doppler Measurements for Robust Localization. Sensors, 16, 580.
https://doi.org/10.3390/s16040580
[9] 何海波, 杨元喜, 孙中苗, 等. GPS多普勒频移测量速度模型与误差分析[J]. 测绘科学技术学报, 2003, 20(2): 79-82.
[10] 周泽波, 沈云中, 李博峰. 基于相位平滑伪距与多普勒数据的GPS动态定位[J]. 大地测量与地球动力学, 2008, 28(3): 59-63.
[11] Ji, H.F. (2014) The New Doppler Shift-and-Range Positioning Algorithm for the Global Navigation Satellite System. Astronomical Research & Technology, 11, 13-18.
[12] Mouri, A., Kubo, Y. and Sugimoto, S. (2015) Detection and Correction of Doppler Biases in Kalman Filter-Based Positioning. Transactions of the Institute of Systems Control & Information Engineers, 2015, 156-164.
[13] Park, B., Sohn, K. and Kee, C. (2008) Optimal Hatch Filter with An Adaptive Smoothing Window Width. Journal of Navigation, 61, 435-454.
https://doi.org/10.1017/S0373463308004694