胆宁片及其主要药效成分代谢药理学研究进展
Progress in Research on Metabolism and Pharmacology of Danning Tablets and Its Main Pharmacodynamics
DOI: 10.12677/TCM.2017.63026, PDF, HTML, XML, 下载: 1,974  浏览: 3,652  科研立项经费支持
作者: 黄杰, 尤圣富, 杨铭, 郑培永, 季光:上海中医药大学附属龙华医院,上海
关键词: 胆宁片药效成分代谢药理学Danning Tablets Medicinal Composition Metabolism Pharmacology
摘要: 胆宁片具有利胆、消炎、防结石等作用,临床上对于慢性胆道感染、胆石症有较好的治疗效果,近年来,胆宁片对非酒精性脂肪肝的疗效和作用逐步被认识,本文对胆宁片及其主要药效成分在糖代谢、脂代谢、胆汁酸代谢方面的调控机制做一概述,以期待其在代谢性疾病领域的研究和应用。
Abstract: Danning Tablets which could promote choleresis, reduce inflammation and prevent gallstone, have good therapeutic effects on chronic biliary tract infection and cholelithiasis in clinical practice. In recent years, the treatment of Danning Tablets on nonalcoholic fatty liver disease has gradually been recognized. This passage provides a summary on the regulation mechanism of Danning Tablets and its main components in glucose metabolism, lipid metabolism and bile acid metabolism, and provides the basis for further research and application of Danning Tablets in metabolic related diseases.
文章引用:黄杰, 尤圣富, 杨铭, 郑培永, 季光. 胆宁片及其主要药效成分代谢药理学研究进展[J]. 中医学, 2017, 6(3): 160-168. https://doi.org/10.12677/TCM.2017.63026

参考文献

[1] 曹晖. 胆宁片临床研究进展[J]. 上海医药, 2007, 28(5): 222-223.
[2] 高鹰, 周颖. 胆宁片联合多烯磷脂酰胆碱胶囊治疗非酒精性脂肪肝的疗效观察[J]. 现代药物与临床, 2017, 32(3): 464-467.
[3] 盛潇磊, 袁睿, 蔺汝云. 胆宁片预防性治疗复发性高甘油三脂血症性胰腺炎合并脂肪肝22例临床分析[J]. 云南中医中药杂志, 2016, 37(4): 85-87.
[4] 彭丽瑞, 马利平. 胆宁片联合瑞舒伐他汀治疗非酒精性脂肪肝病的疗效观察[J]. 世界最新医学信息文摘(连续型电子期刊), 2015, 15(16): 110.
[5] 王志凌. 胆宁片治疗非酒精性脂肪肝病的疗效观察[J]. 中国医药指南, 2014, 12(23): 158-159.
[6] 冯艳. 胆宁片联合辛伐他汀治疗非酒精性脂肪肝的临床观察[J]. 中国医药指南, 2013, 11(9): 640-641.
[7] 阙一平, 周瑞芳. 胆宁片治疗非酒精性脂肪肝32例疗效观察[J]. 中国社区医师(医学专业), 2011, 13(8): 121.
[8] 吕清国. 胆宁片治疗非酒精性脂肪肝安全性和有效性临床研究(肝气郁滞、湿热内蕴证研究) [D]: [硕士学位论文]. 2009: 1-36.
[9] 芮铭安, 王曹锋, 方晶, 等. 还原型谷胱甘肽和胆宁片治疗非酒精性脂肪肝的临床疗效对比[J]. 中国全科医学, 2001(4): 269-270.
[10] 王莉, 丁丽丽, 杨帆, 等. 胆宁片对胆汁瘀积小鼠肝脏转运体及代谢酶基因表达的影响[J]. 中成药, 2013(7): 1385-1389.
[11] Ding, L., Zhang, B., Zhan, C., et al. (2014) Danning Tablets Attenuates α-Naphthylisothiocyanate-Induced Cholestasis by Modulating the Expression of Transporters and Metabolic Enzymes. BMC Complementary and Alternative Medicine, 14, 249.
https://doi.org/10.1186/1472-6882-14-249
[12] Yang, F., Tang, X., Ding, L., et al. (2016) Curcumin Protects ANIT-Induced Cholestasis through Signaling Pathway of FXR-Regulated Bile Acid and Inflammation. Scientific Reports, 6, Article No. 33052.
https://doi.org/10.1038/srep33052
[13] 陈鹏. 胆宁片对非酒精性脂肪肝新西兰兔脂代谢影响的实验研究[D]: [硕士学位论文]. 南京: 南京中医药大学, 2014: 17-29.
[14] Wang, L., Zhang, B., Huang, F., et al. (2016) Curcumin Inhibits Lipolysis via Suppression of ER Stress in Adipose Tissue and Prevents Hepatic Insulin Resistance. Journal of Lipid Research, 57, 1243-1255.
https://doi.org/10.1194/jlr.M067397
[15] Vetterli, L., Brun, T., Giovannoni, L., et al. (2011) Resveratrol Potentiates Glucose-Stimulated Insulin Secretion in INS-1E Beta-Cells and Human Islets through a SIRT1-Dependent Mechanism. Journal of Biological Chemistry, 286, 6049-6060.
https://doi.org/10.1074/jbc.M110.176842
[16] Wang, Q., Sun, X., Li, X., et al. (2015) Resveratrol Attenuates Intermittent Hypoxia-Induced Insulin Resistance in Rats: Involvement of Sirtuin 1 and the Phosphatidylinositol-4,5-Bisphosphate 3-Kinase/AKT Pathway. Molecular Medicine Reports, 11, 151-158.
[17] Burgess, T.A., Robich, M.P., Chu, L.M., et al. (2011) Improving Glucose Metabolism with Resveratrol in a Swine Model of Metabolic Syndrome through Alteration of Signaling Pathways in the Liver and Skeletal Muscle. Archives of Surgery, 146, 556-564.
https://doi.org/10.1001/archsurg.2011.100
[18] Yao, L., Wan, J., Li, H., et al. (2015) Resveratrol Relieves Gestational Diabetes Mellitus in Mice through Activating AMPK. Reproductive Biology and Endocrinology, 13, 118.
https://doi.org/10.1186/s12958-015-0114-0
[19] Coelho, W.S., Da Silva, D., Marinho-Carvalho, M.M. and Sola-Penna, M. (2012) Serotonin Modulates Hepatic 6- Phosphofructo-1-Kinase in an Insulin Synergistic Manner. The International Journal of Biochemistry & Cell Biology, 44, 150-157.
[20] Liu, J., et al. (2013) Rhein Protects Pancreatic β-Cells From Dynamin-Related Protein-1-Mediated Mitochondrial Fission and Cell Apoptosis under Hyperglycemia. Diabetes, 62, 3927-3935.
https://doi.org/10.2337/db13-0251
[21] Feng, Y., et al. (2010) Emodin, a Natural Product, Selectively Inhibits 11β-Hydroxysteroid Dehydrogenase Type 1 and Ameliorates Metabolic Disorder in Diet-Induced Obese Mice. British Journal of Pharmacology, 161, 113-126.
https://doi.org/10.1111/j.1476-5381.2010.00826.x
[22] Dai, X., Ding, Y., Zhang, Z., et al. (2013) Quercetin but Not Quercitrin Ameliorates Tumor Necrosis Factor-Alpha- Induced Insulin Resistance in C2C12 Skeletal Muscle Cells. Biological and Pharmaceutical Bulletin, 36, 788-795.
https://doi.org/10.1248/bpb.b12-00947
[23] Eid, H.M., Nachar, A., Thong, F., et al. (2015) The Molecular Basis of the Antidiabetic Action of Quercetin in Cultured Skeletal Muscle Cells and Hepatocytes. Pharmacognosy Magazine, 11, 74-81.
https://doi.org/10.4103/0973-1296.149708
[24] Chang, W.-C., et al. (2015) Protective Effect of Vanillic Acid against Hyperinsulinemia, Hyperglycemia and Hyperlipidemia via Alleviating Hepatic Insulin Resistance and Inflammation in High-Fat Diet (HFD)-Fed Rats. Nutrients, 7, 9946-9959.
https://doi.org/10.3390/nu7125514
[25] Ejaz, A., Wu, D., Kwan, P. and Meydani, M. (2009) Curcumin Inhibits Adipogenesis in 3T3-L1 Adipocytes and Angiogenesis and Obesity in C57/BL Mice. Journal of Nutrition, 139, 919-925.
https://doi.org/10.3945/jn.108.100966
[26] Wong, T.Y., Lin, S.-M. and Leung, L.K. (2015) The Flavone Luteolin Suppresses SREBP-2 Expression and Post- Translational Activation in Hepatic Cells. PLoS ONE, 10, e135637.
https://doi.org/10.1371/journal.pone.0135637
[27] Goldwasser, J., Cohen, P.Y., Yang, E., et al. (2010) Transcriptional Regulation of Human and Rat Hepatic Lipid Metabolism by the Grapefruit Flavonoid Naringenin: Role of PPARα, PPARγ and LXRα. PLoS ONE, 5, e12399.
https://doi.org/10.1371/journal.pone.0012399
[28] Field, F.J., Born, E. and Mathur, S.N. (1997) Effect of Micellar β-Sitosterol on Cholesterol Metabolism in CaCo-2 Cells. Journal of Lipid Research, 38, 348-360.
[29] Ajmo, J.M., Liang, X., Rogers, C.Q., et al. (2008) Resveratrol Alleviates Alcoholic Fatty Liver in Mice. The American Journal of Physiology-Gastrointestinal and Liver Physiology, 295, G833-G842.
https://doi.org/10.1152/ajpgi.90358.2008
[30] Andrade, J.M., Paraiso, A.F., de Oliveira, M.V., et al. (2014) Resveratrol Attenuates Hepatic Steatosis in High-Fat Fed Mice by Decreasing Lipogenesis and Inflammation. Nutrition, 30, 915-919.
https://doi.org/10.1016/j.nut.2013.11.016
[31] Eseberri, I., Miranda, J., Lasa, A., et al. (2015) Doses of Quercetin in the Range of Serum Concentrations Exert Delipidating Effects in 3T3-L1 Preadipocytes by Acting on Different Stages of Adipogenesis, but Not in Mature Adipocytes. Oxidative Medicine and Cellular Longevity, 2015, Article ID: 480943.
https://doi.org/10.1155/2015/480943
[32] Lu, C., Zhang, F., Xu, W., et al. (2015) Curcumin Attenuates Ethanol-Induced Hepatic Steatosis through Modulating Nrf2/FXR Signaling in Hepatocytes. IUBMB Life, 67, 645-658.
https://doi.org/10.1002/iub.1409
[33] Timmers, S., Konings, E., Bilet, L., et al. (2011) Calorie Restriction-Like Effects of 30 Days of Resveratrol Supplementation on Energy Metabolism and Metabolic Profile in Obese Humans. Cell Metabolism, 14, 612-622.
https://doi.org/10.1016/j.cmet.2011.10.002
[34] Wang, W., Wang, C., Ding, X.Q., et al. (2013) Quercetin and Allopurinol Reduce Liver Thioredoxin-Interacting Protein to Alleviate Inflammation and Lipid Accumulation in Diabetic Rats. British Journal of Pharmacology, 169, 1352- 1371.
https://doi.org/10.1111/bph.12226
[35] Li, Z.Y., Ding, L.L., Li, J.M., et al. (2015) 1H-NMR and MS Based Metabolomics Study of the Intervention Effect of Curcumin on Hyperlipidemia Mice Induced by High-Fat Diet. PLoS ONE, 10, e120950.
https://doi.org/10.1371/journal.pone.0120950
[36] Um, M.Y., Hwang, K.H., Ahn, J. and Ha, T.Y. (2013) Curcumin Attenuates Diet-Induced Hepatic Steatosis by Activating AMP-Activated Protein Kinase. Basic & Clinical Pharmacology & Toxicology, 113, 152-157.
https://doi.org/10.1111/bcpt.12076
[37] Kim, J.H., Kang, S.I., Shin, H.S., et al. (2013) Sasa quelpaertensis and p-Coumaric Acid Attenuate Oleic Acid-Induced Lipid Accumulation in HepG2 Cells. Bioscience, Biotechnology, and Biochemistry, 77, 1595-1598.
https://doi.org/10.1271/bbb.130167