PM  >> Vol. 7 No. 4 (July 2017)

    双曲平面上非蜕化圆锥截线的聚焦性
    The Focus Properties of Nonsingular Conic Curves in Hyperbolic Plane

  • 全文下载: PDF(487KB) HTML   XML   PP.334-348   DOI: 10.12677/PM.2017.74043  
  • 下载量: 125  浏览量: 183   国家自然科学基金支持

作者:  

何 海,王幼宁:北京师范大学数学科学学院,北京

关键词:
双曲平面圆锥截线聚焦性Beltrami-Klein坐标系Hyperbolic Plane Conic Curves Focus Beltrami-Klein Coordinate System

摘要:

众所周知,在平面几何中,从椭圆一个焦点出发的光线被椭圆反射后汇聚于它的另一个焦点;从双曲线的一个焦点出发的光线被双曲线反射后虚汇聚于它的另一个焦点;而对于抛物线来说,从焦点出发的光线被抛物线反射成为平行光。本文证明了双曲平面上的非蜕化圆锥截线也有相应的聚焦性;而且,存在一些非圆锥截线的曲线,它们也有聚焦性。

In the plane geometry, as we all know, the light through a focus of the ellipse is reflected by ellipse to focus on another; similarly the light through the hyperbola one focus, after reflection, reversely focuses on another; and for the parabola it is true that the light from focus is reflected into parallel light. This paper proved that the nonsingular conic curves on the hyperbolic plane have corresponding focus properties; moreover, there are some curves having focusing properties, which are not conic curves.

文章引用:
何海, 王幼宁. 双曲平面上非蜕化圆锥截线的聚焦性[J]. 理论数学, 2017, 7(4): 334-348. https://doi.org/10.12677/PM.2017.74043

参考文献

[1] 王幼宁. 双曲空间型中圆锥截线的度量几何分类[J]. 理论数学, 2012, 2(2): 97-102.
[2] 王幼宁, 李德龙. 双曲空间中的Beltrami-Klein坐标系[J]. 北京师范大学学报(自然科学版), 2010, 46(1): 13-16.
[3] 王幼宁, 吴英丽. 关于双曲空间的椭圆[J]. 北京师范大学学报(自然科学版), 2007, 43(1): 6-9.
[4] 王幼宁, 吴英丽. 双曲平面上椭圆的凸性和运动[J]. 北京师范大学学报(自然科学版), 2008, 44(5): 469-471.
[5] 王幼宁, 连詠欣. 关于双曲平面上的双曲线[J]. 北京师范大学学报(自然科学报), 2011, 47(2): 115-121.