应用数学进展  >> Vol. 6 No. 4 (July 2017)

定义于双叶双曲面上的多元Lagrange插值问题
Multivariate Lagrange Interpolation Defined on Hyperboloid

DOI: 10.12677/AAM.2017.64065, PDF, HTML, XML, 下载: 865  浏览: 2,120  科研立项经费支持

作者: 刘海波, 惠婷婷, 崔利宏:辽宁师范大学,辽宁 大连

关键词: 双叶双曲面多元Lagrange插值唯一可解结点组迭加插值法Hyperboloid of Two Sheets Multivariate Lagrange Interpolation The Only Solution Node Group Superposition Interpolation Method

摘要: 针对在实际科研生产中经常涉及到的有关定义于双叶双曲面上的多元Lagrange插值问题进行了研究。提出了定义于双叶双曲面上的多元Lagrange插值定义,给出了判定双叶双曲面上的结点组是否构成插值正则结点组的判定定理以及迭加构造方法,最后通过算例对所得方法进行了实现。
Abstract: The multivariate Lagrange interpolation problem, which is usually defined on the hyperboloid of two sheets, is often studied in practical scientific research and production. Multivariate Lagrange interpolation is proposed to define the definition of hyperboloid of two sheets, given to determine whether the node group on an hyperboloid of two sheets forms judgment theorem and superposition method to construct interpolation regular set of nodes, finally is to implement the method.

文章引用: 刘海波, 惠婷婷, 崔利宏. 定义于双叶双曲面上的多元Lagrange插值问题[J]. 应用数学进展, 2017, 6(4): 547-552. https://doi.org/10.12677/AAM.2017.64065

参考文献

[1] Carnicer, J.M. and Gasca, M. (2010) Multivariate Polynomial Interplation: Some New Trends. Monogr Real Acad Cienc Zaragoza, 33, 197-208.
https://doi.org/10.1137/s0036142999361566
[2] 梁学章. 关于多元函数的插值与逼近[J]. 高等学校计算数学学报, 1979(1): 123-124.
[3] 梁学章. 二元插值的适定结点组与迭加插值法[J]. 吉林大学自然科学学报, 1979(1): 27-32.
[4] Liang, X.Z., Lv, C.M. and Feng, R.Z. (2001) Properly Posed Sets of Nodes for Multivariate Lagrange Interpolation in Cs. SIAM Journal on Numerical Analysis, 30, 581-595.
https://doi.org/10.1016/j.cam.2005.03.083
[5] 梁学章, 张洁琳, 崔利宏. 多元Lagrange插值与Cayley-Bacharach定理[J]. 高等数学计算数学学报, 2005(27): 276-281.
[6] Liang, X.Z., Wang, R.H., Cui, L.H, et al. (2006) Some Researches on Trivariate Lagrange Interpolation. Journal of Computational and Applied Mathematics, 195, 192-205.
https://doi.org/10.1016/j.cam.2005.03.083
[7] 梁学章, 张明, 张洁琳, 等. 高维空间中代数流形上多项式空间的维数与Lagrange插值适定结点组的构造[J]. 吉林大学学报(理学版), 2006(44): 309-317.
[8] Liang, X.Z., Zhang, J.L., Zhang, M., et al. (2009) Superposition Interpolation Process in Cn. Applied Mathematics and Computation, 215, 227-234.
https://doi.org/10.1016/j.amc.2009.04.079
[9] De Boor, C. and Ron, A. (1990) On Multivariate Polynomial Interpolation. Constructive Approximation, 6, 287-302.
https://doi.org/10.1007/BF01890412
[10] Gasca, M. and Maeztu, J.I. (1982) On Lagrange and Hermite Interpolation in Rk. Number, 39, 1-14.
https://doi.org/10.1007/BF01399308
[11] Sauer, T. (1988) Polynomial Interpolation of Minimal Degree and Grobner Bases. Cambridge University Press, Cambridge, 483-494.
[12] Liang, X.Z., Feng, R.Z. and Cui, L.H. (2000) Lagrange Interpolation on a Spherical Surface. The American Journal of Mathematics, 16, 243-252.
[13] Castell, W.Z., Fernandez, N.L. and Xu, Y. (2007) Polynomial Interpolation on the Unit Shpere II. Advances in Computational Mathematics, 26, 155-171.
https://doi.org/10.1007/s10444-005-7510-5