变空间分数阶扩散方程微分阶数的数值反演
Numerical Inversion for the Fractional Order in the Variable-Order Space-Fractional Diffusion Equation
DOI: 10.12677/AAM.2017.64069, PDF, HTML, XML,  被引量 下载: 1,764  浏览: 3,921  科研立项经费支持
作者: 刘迪, 王淑香:广州航海学院基础教学部,广东 广州
关键词: 变分数阶扩散方程反问题同伦正则化数值反演Variable-Order Fractional Diffusion Equation Inverse Problem Homotopy Regularization Algorithm Numerical Inversion
摘要: 本文探讨一维变空间分数阶对流扩散方程,应用改进了的Grunwald-Letnikov分数阶导数定义对方程进行了离散,建立了隐式差分格式,并证明了该差分法的收敛性和稳定性。其次应用同伦正则化算法给出一维变空间分数阶扩散模型微分阶数的数值反演模拟,并讨论不同条件下的反演结果。
Abstract: We consider a variable-order fractional advection-diffusion equation. Explicit approximations for the equation are proposed. Stability and convergence of the methods are discussed. Moreover, the homotopy regularization algorithm is applied to solve the inverse problem, and numerical examples are presented. 
文章引用:刘迪, 王淑香. 变空间分数阶扩散方程微分阶数的数值反演[J]. 应用数学进展, 2017, 6(4): 589-598. https://doi.org/10.12677/AAM.2017.64069

参考文献

[1] Miller, K.S. and Ross, B. (1993) An Introduction to the Fractional Calculus and Fractional Differential Equations. John Wiley, New York.
[2] Podlubny, I. (1999) Fractional Differential Equations. Academic, San Diego.
[3] Kilbas, A.A., Srivastava, H.M. and Trujillo, J.J. (2006) Theory and Applications of Fractional Differential Equations. Elsevier, Amsterdam.
[4] 陈文, 孙洪广, 李西成, 等. 力学与工程问题的分数阶导数建模[M]. 北京: 科学出版社, 2010.
[5] 郭柏灵, 蒲学科, 黄凤辉. 分数阶偏微分方程及其数值解[M]. 北京: 科学出版社, 2011.
[6] Coimbra, C.F.M. (2003) Mechanica with Variable-Order Differential Operators. Annalen der Physik, 12, 692-703.
[7] Copper, G.R.J. and Rown, D.R.C. (2004) Filtering Using Variable Order Vertical Derivatives. Computers and Geosciences, 30, 455-459.
https://doi.org/10.1016/j.cageo.2004.03.001
[8] Tseng, C.C. (2006) Design of Variable and Adaptive Fractional Order FIR Differentiators. Signal Processing, 86, 2554-2566.
https://doi.org/10.1016/j.sigpro.2006.02.004
[9] Chen, C.M., Liu, F. and Anh, V. (2010) Numerical Schemes with High Spatial Accuracy for a Variable-Order Anomalous Subdiffusion Equation. SIAM Journal on Scientific Computing, 32, 1740-1760.
https://doi.org/10.1137/090771715
[10] Chen, C.M., Liu, F. and Anh, V. (2011) Turner I Numerical Simulation for the Variable-Order Galilei Invariant Advection Diffusion Equation with a Nonlinear Source Term. Applied Mathematics and Computation, 217, 5729-5742.
https://doi.org/10.1016/j.amc.2010.12.049
[11] Chen, C.M., Liu, F., Turner, I., Anh, V. and Chen, Y. (2013) Numerical Approximation for a Variable-Order Nonlinear Reaction-Subdiffusion Equation. Numerical Algorithms, 63, 265-290.
https://doi.org/10.1007/s11075-012-9622-6
[12] Zhuang, P., Liu, F., Anh, V. and Turner, I. (2009) Numerical Methods for the Variable-Order Fractional Advection-Diffusion Equation with a Nonlinear Source Term. SIAM Journal on Numerical Analysis, 47, 1760-1781.
[13] 马维元, 张海东, 邵亚斌. 非线性变阶分数阶扩散方程的全隐差分格式[J]. 山东大学学报(自然科学版), 2013, 48(2): 93-97.
[14] 马亮亮, 刘冬兵. Coimbra 变时间分数阶扩散方程–波动方程的新隐式差分法[J]. 西南师范大学学报(自然科学版), 2015, 40(3): 25-31.
[15] 刘迪, 孙春龙, 李功胜, 贾现正. 变分数阶扩散方程微分阶数的数值反演[J]. 应用数学进展, 2015, 4(4): 326-335.
[16] 贾现正, 张大利, 李功胜, 等. 等空间-时间分数阶变系数对流扩散方程微分阶数的数值反演[J]. 计算数学, 2014, 36(2): 113-132.