PM  >> Vol. 7 No. 4 (July 2017)

    一类三阶中立型半线性时滞微分方程振动准则
    Oscillate Criteria of Third Order Semi-Linear Neutral Differential Equations with Delay Argument

  • 全文下载: PDF(415KB) HTML   XML   PP.356-362   DOI: 10.12677/PM.2017.74045  
  • 下载量: 147  浏览量: 1,544   科研立项经费支持

作者:  

李全娣,杨 菊,黎小贤,林全文:广东石油化工学院理学院数学系,广东 茂名

关键词:
振动准则三阶中立型半线性时滞微分方程广义Riccati变换Oscillation Criterion Third Order Semi-Linear Neutral Differential Equations with Delay Argu-ment Generalized Riccati Substitution

摘要:

本文研究一类三阶中立型半线性时滞微分方程振动性质,利用广义Riccati变换和经典不等式技巧,参考最近论文结果,建立了一个新的振动性准则,并给出证明和例子。

We study the oscillatory of third order semi-linear neutral differential equations with delay argument. Using a generalized Riccati substitution and inequation technique, and consulting some results in recent literature, a new oscillation criterion is established and proved, also a number of examples are given to prove their efficiency..

文章引用:
李全娣, 杨菊, 黎小贤, 林全文. 一类三阶中立型半线性时滞微分方程振动准则[J]. 理论数学, 2017, 7(4): 356-362. https://doi.org/10.12677/PM.2017.74045

参考文献

[1] 惠远先, 王俊杰. 三阶中立型半线性时滞微分方程的振动性[J]. 井冈山大学学报, 2017, 38(1): 8-13.
[2] 仉志余, 王晓霞, 俞元洪. 三阶半线性中立型分布时滞微分方程的振动性[J]. 应用数学学报, 2015, 38(3): 450-459.
[3] Baculikova, B. and Dzurina, J. (2010) Oscillation of Third-Order Neutral Differential Equations. Mathematical and Computer Modelling, 52, 215-222.
https://doi.org/10.1016/j.mcm.2010.02.011
[4] Yuan, G.S. and Fan, W.M. (2006) Note on the Paper of Dzurina and Stavroulakis. Applied Mathematics and Computation, 174, 1634-1641.
https://doi.org/10.1016/j.amc.2005.07.008
[5] Agarwal, R.P., Zhang, C.H. and Li, T.X. (2016) Some Remarks on Oscillantion of Second Order Neutral Differential Equations. Applied Mathematics and Computation, 274, 178-181.
https://doi.org/10.1016/j.amc.2015.10.089
[6] Ye, L. and Xu, Z. (2009) Oscillation Criteria for Second Order Quasilinear Neutral Delay Differential Equations. Applied Mathematics and Computation, 207, 388-396.
https://doi.org/10.1016/j.amc.2008.10.051
[7] Philos, C.G. (1983) On a Kamenev’s Integral Criterion for Oscillation of Linear Differential Equations of Second Order. Utilitas Mathematica, 24, 277-289.
[8] Han, Z., Li, T., Sun, S. and Sun, Y. (2010) Remarks on the Paper [Appl. Math. Comput. 207 (2009) 388-396]. Applied Mathematics and Computation, 215, 3998-4007.
https://doi.org/10.1016/j.amc.2009.12.006
[9] Dzurina, J. and Kotorova, R. (2009) Properties of the Third Order Trinomial Differential Equations with Delay Argument. Nonlinear Analysis, 71, 1995-2002.
https://doi.org/10.1016/j.na.2009.01.070
[10] Aktas, M.F., TIryaki, A. and Zafer, A. (2010) Oscillation Criteria for Third-Order Nonlinear Functional Differential Equations. Applied Mathematics Letters, 23, 756-762.
https://doi.org/10.1016/j.aml.2010.03.003
[11] 林全文, 俞元洪. 三阶半线性时滞微分方程的振动性和渐进性[J]. 系统科学与数学, 2015, 35(2): 233-244.