CSA  >> Vol. 7 No. 7 (July 2017)

    A Quantum Key Distribution Protocol Based on the Single Polarization Photon

  • 全文下载: PDF(553KB) HTML   XML   PP.688-695   DOI: 10.12677/CSA.2017.77080  
  • 下载量: 95  浏览量: 1,058   科研立项经费支持


傅 涛:江苏博智软件科技股份有限公司,江苏 南京;
王海彬:南京信息工程大学计算机与软件学院,江苏 南京

密钥分配效率量子密钥分配单偏振光子Key Distribution Efficiency Quantum Key Distribution Single Polarized Photon



A simple and efficient quantum key distribution protocol (called SEQDKD) is proposed. Based on the single polarization photon system, the protocol can efficiently realize the quantum key distribution. Meantime, it is more scientific that we use different efficiency calculation methods to measure the efficiency of different protocols. Compared with other common quantum key distribution protocols, our protocol is more efficient and easier to implement. More importantly, this protocol is theoretically proved to be secure against the intercept-resend attack.

傅涛, 王海彬. 一种基于单偏振光子的量子密钥分配协议[J]. 计算机科学与应用, 2017, 7(7): 688-695. https://doi.org/10.12677/CSA.2017.77080


[1] Bennet, C.H. and Brassard, G. (1984) Quantum Cryptography: Public Key Distribution and Coin Tossing. Pro-ceedings of IEEE International Conference on Computers, Systems and Signal Processing, New York, 175, 8.
[2] Bennet, C.H. (1992) Quantum Cryptography Using Any Two Nonorthogonal States. Physical Review Letters, 68, 3121-3124.
[3] Deng, F.G., Long, G.L. and Liu, X.S. (2003) Two-Step Quantum Direct Communication Protocol Using the Einstein- Podolsky-Rosen Pair Block. Physical Review A, 68, 042317.
[4] Liu, Y.M., Wang, D., Liu, X.S., et al. (2009) Revisiting Naseri’s Secure Quantum Sealed-Bid Auction. International Journal of Quantum Information, 7, 1295-1301.
[5] Bennett, C.H., Brassard, G., Crépeau, C., et al. (1993) Teleporting an Unknown Quantum State via Dual Classical and Einstein-Podolsky-Rosen Channels. Physical Review Letters, 70, 1895-1899.
[6] Long, L.R., Li, H.W., Zhou, P., et al. (2011) Multipar-ty-Controlled Teleportation of an Arbitrary GHZ-Class State by Using a d-Dimensional (N+2)-Particle Nonmaxi-mally Entangled State as the Quantum Channel. Science China-Physics Mechanics & Astronomy, 54, 484-490.
[7] Ekert, A. (1991) Quantum Cryptography Based on Bell’s Theorem. Physical Review Lette
[8] Bechmann-Pasquinucci, H. and Tittel, W. (2000) Quantum Cryptography Using Larger Alphabets. Physical Review A, 61, 062308.
[9] rs, 67, 661
[10] Bennett, C.H. and Wiesner, S.J. (1992) Communication via One- and Two-Particle Operators on Einstein-Podolsky- Rosen States. Physical Review Letters, 69, 2881-2884.
[11] Lo, H.K. and Chau, H.F. (1999) Unconditional Security of Quantum Key Distribution over Arbitrarily Long Distances. Science, 283, 2050-2056.
[12] Degiovanni, I.P., Ruo Berchera, I., Castelletto, S., et al. (2004) Quantum Dense Key Distribution. Physical Review A— Atomic, Molecular, and Optical Physics, 69, 032310.