MS  >> Vol. 7 No. 4 (July 2017)

    新型抗辐射GYSGG晶体的Raman光谱研究
    Study on the Raman Spectra of a New Type Gysgg Radiation Resistant Crystal

  • 全文下载: PDF(1472KB) HTML   XML   PP.515-522   DOI: 10.12677/MS.2017.74068  
  • 下载量: 108  浏览量: 157   国家自然科学基金支持

作者:  

方忠庆,孙敦陆,罗建乔,张会丽,赵绪尧,权聪,胡伦珍,程毛杰,张庆礼,殷绍唐:中国科学院安徽光学精密机械研究所,安徽省光子器件与材料重点实验室,安徽 合肥

关键词:
GYSGGRaman光谱最大声子能量GYSGG Raman Spectrum Maximum Phonon Energy

摘要:

对采用提拉法生长的新型GYSGG (Gd0.63Y2.37Sc2Ga3O12)晶体的Raman光谱进行了研究。通过与结构相同的YAG (Y3Al5O12)和GGG (Gd3Ga5O12)石榴石晶体的比较,将GYSGG的Raman振动峰与四面体、八面体及十二面体的晶体结构相联系,分类和指认了Raman光谱中13个峰对应的晶格振动模式,得到GYSGG的最大声子能量为732.1 cm−1,并通过第一性原理计算分析了GYSGG,GSGG (Gd3Sc2Ga3O12)和YSGG (Y3Sc2Ga3O12)最大声子能量差别的原因。最后在几种常见的高浓度掺Er3+激光晶体中,分析了最大声子能量对激光上下能级寿命的影响规律。本文结果可以为晶体生长微观机理的研究及激光晶体的设计提供一定的参考。

Raman spectrum of a new radiation resistant GYSGG (Gd0.63Y2.37Sc2Ga3O12) crystal grown by Czo-chralski method was studied. The Raman vibration peaks are related with crystal structure of tet-rahedron, octahedron and dodecahedron by comparing with YAG (Y3Al5O12) and GGG (Gd3Ga5O12) garnet crystals with the same structure. The corresponding lattice vibration modes of 13 Raman peaks are classified and identified. The maximum phonon energy of GYSGG crystal is obtained to be 732.1 cm−1, and the different maximum phonon energy of GYSGG, GSGG (Gd3Sc2Ga3O12) and YSGG (Y3Sc2Ga3O12) by first-principles was discussed. At last, in comparison with common laser crystals high-doped with Er3+, we analyzed the influence of maximum phonon energy with energy level lifetime. Our results can provide some reference for the study of the microscopic mechanism of crystal growth and the design of the laser crystal.

文章引用:
方忠庆, 孙敦陆, 罗建乔, 张会丽, 赵绪尧, 权聪, 胡伦珍, 程毛杰, 张庆礼, 殷绍唐. 新型抗辐射GYSGG晶体的Raman光谱研究[J]. 材料科学, 2017, 7(4): 515-522. https://doi.org/10.12677/MS.2017.74068

参考文献

[1] Wood, D.L. and Nassau, K. (1990) Optical Properties of Gadolinium Gallium Garnet. Applied Optics, 29, 3704-3707.
https://doi.org/10.1364/AO.29.003704
[2] 程毛杰, 孙敦陆, 罗建乔, 张会丽, 陈家康, 张庆礼, 殷绍唐. 新型GYSGG(GdxY3-xSc2Ga3O12)晶体的生长、结构及透过光谱研究[J]. 无机材料学报, 2014, 29(10):1077-1081.
[3] Zhang, B.Y., Xu, J.L., Wang, G.J., He, J.L., Wang, W.J., Zhang, Q.L., Sun, D.L., Luo, J.Q. and Yin, S.T. (2011) Continuous-Wave and Passively Q-Switched Laser Performance of a Disordered Nd:GYSGG Crystal. Optics Communications, 284, 5734-5737.
https://doi.org/10.1016/j.optcom.2011.08.004
[4] Song, Q., Wang, G.J., Zhang, B.J., Zhang, Q.L., Wang, W.J., Wang, M.H., Sun, G.H., Bo, Y. and Peng, Q.J. (2015) Passively Q-Switched Mode-Locked Dual-Wavelength Nd:GYSGG Laser Using Graphene Oxide Saturable Absorber. Optics Communications, 347, 64-67.
https://doi.org/10.1016/j.optcom.2015.03.002
[5] Song, Q., Wang, G.J., Zhang, B.J., Zhang, Q.L., Wang, W.J., Wang, M.H., Sun, G.H., Bo, Y. and Peng, Q.J. (2015) Diode-Pumped Passively Du-al-Wavelength Q-Switched Nd:GYSGG Laser Using Graphene Oxide as the Saturable Absorber. Applied Optics, 54, 2688-2692.
https://doi.org/10.1364/AO.54.002688
[6] Zhong, K., Sun, C.L., Yao, J.Q., Xu, D.G., Xie, X.Y., Cao, X.L., Zhang, Q.L., Luo, J.Q., Sun, D.L. and Yin, S.T.(2013) Efficient Continuous-Wave 1053-NM Nd:GYSGG Laser with Passively Q-Switched Dual-Wavelength Operation for Terahertz Generation. IEEE Journal of Quantum Electronics, 49, 375-379.
https://doi.org/10.1109/JQE.2013.2246545
[7] Chen, J.K., Sun, D.L., Luo, J.Q., Xiao, J.Z., Dou, R.Q, and Zhang, Q.L. (2013) Er3+ Doped GYSGG Crystal as a New Laser Material Resistant to Ionizing Radiation. Optics Communications, 8, 84-87.
https://doi.org/10.1016/j.optcom.2013.03.048
[8] Chen, J.K., Sun, D.L., Luo, J.Q., Zhang, H.L., Dou, R.Q., Xiao, J.Z, Zhang, Q.L. and Yin, S.T. (2013) Spectroscopic Properties and Diode End-Pumped 2.79 μm Laser Performance of Er,Pr:GYSGG Crystal. Optics Express, 21, 23425-23432.
https://doi.org/10.1364/OE.21.023425
[9] Chen, J.K., Sun, D.L., Luo, J.Q., Xiao, J.Z., Kang, H., and Zhang, H.L., Cheng, M.J., Zhang. Q.L. and Yin, S.T. (2013) Spectroscopic, Diode-Pumped Laser Properties and Gamma Irradiation Effect on Yb,Er,Ho:GYSGG Crystals. Optics Letters, 38, 1218-1220.
https://doi.org/10.1364/OL.38.001218
[10] Luo, J.Q., Sun, D.L., Zhang, H.L., Guo, Q., Fang, Z.Q., Zhao, X.Y., Cheng, M.J., Zhang, Q.L. and Yin, S.T. (2015) Growth, Spectroscopy, and Laser Performance of a 2.79 μm Cr,Er,Pr:GYSGG Radiation-Resistant Crystal. Optics Letters, 40, 4194-4197.
https://doi.org/10.1364/OL.40.004194
[11] 杨文琴, 郭丽花, 冯尚源, 陈金铠. 单, 双掺钒酸钇晶体的Raman光谱与能量转移研究[J]. 光谱学与光谱分析, 2007, 27(3): 581-584.
[12] Rousseau, D.L., Bauman, R.P. and Porto, S.P.S. (2010) Normal Mode Determination in Crystals. Journal of Raman Spectroscopy, 10, 253-290.
https://doi.org/10.1002/jrs.1250100152
[13] 张鹏翔, 刘玉龙, 莫育俊. 钆镓石榴石单晶的喇曼光谱[J]. 物理学报, 1983(9): 1200-1203.
[14] 徐培苍,李如壁, 王永强. 地学中的拉曼光谱[M]. 西安: 陕西科学技术出版社, 1996.
[15] 孙敦陆, 张庆礼, 张霞, 邵淑芬, 谷长江, 王爱华, 江海河, 殷绍唐. Nd:Gd3Ga5O12晶体的生长与拉曼光谱研究[J]. 光电子•激光, 2007, 18(6): 706-709.
[16] 滕冰, 胡小波, 王继扬, 董胜明, 王正平. BiB3O6晶体的拉曼光谱[J]. 光电子•激光, 2004, 15(6): 734-738.
[17] Mulliken, R.S (1955) Electronic Population Analysis on LCAO-MO Molecular Wave Functions. II. Overlap Populations, Bond Orders, and Covalent Bond Energies. Journal of Chemical Physics, 23, 1841-1846.
https://doi.org/10.1063/1.1740589
[18] Mulliken, R.S. (1955) Electronic Population Analysis on LCAO-MO Molecular Wave Functions. IV. Bonding and Antibonding in LCAO and Valence-Bond Theories. Journal of Chemical Physics, 23, 2343-2346.
https://doi.org/10.1063/1.1741877
[19] Tang, X.L., Feng, D.X., Wan, S.M., Kang, L., Zhang, B. and Lin, Z.S. (2015) Crystal Structure and Raman Spectrum of Ba2Pb (B3O6)2. Materials Chemistry & Physics, 163, 501-506.
https://doi.org/10.1016/j.matchemphys.2015.08.005
[20] Stoneman, R.C. and Esterowitz, L. (1992) Efficient Resonantly Pumped 2.8-Microm Er3+: GSGG Laser. Optics Letters, 17, 816-818.
https://doi.org/10.1364/OL.17.000816
[21] Dinerman, B.J. and Moulton, P.F. (1994) 3-μm CW Laser Operations in Erbium-Doped YSGG, GGG, and YAG. Optics Letters, 19, 1143-1145.
https://doi.org/10.1364/OL.19.001143