应用数学进展  >> Vol. 6 No. 4 (July 2017)

RLW-Burgers方程的新显式行波解
New Explicit Traveling Wave Solutions of RLW-Burgers Equation

DOI: 10.12677/AAM.2017.64072, PDF, HTML, XML, 下载: 818  浏览: 1,990  国家自然科学基金支持

作者: 王鑫:海南大学信息科学技术学院,海南 海口

关键词: RLW-Burgers方程显式行波解参数G展开法RLW-Burgers Equation Explicit Traveling Wave Solutions Parameters G Expansion Method

摘要: 通过运用一类含参数的展开法对RLW-Burgers方程进行了研究,求得了该方程的多种函数形式的新显式行波解。事实证明,此类含参数的展开法不仅可以得到非线性偏微分方程的精确解,而且由于所含参数的任意性,可以得到非线性偏微分方程更多类型的显式行波解。
Abstract: We studied the RLW-Burgers equation by using a class of parametric G expansion method, and obtained many new explicit traveling wave solutions for the various functional forms of the equa-tion. In fact, the parameters of the G expansion method can not only obtain the exact solutions of nonlinear partial differential equations, but also because of the arbitrariness of parameters, we can obtain more explicit traveling wave solutions for nonlinear partial differential equations.

文章引用: 王鑫. RLW-Burgers方程的新显式行波解[J]. 应用数学进展, 2017, 6(4): 619-626. https://doi.org/10.12677/AAM.2017.64072

参考文献

[1] Wang, M.L, Li, X.Z. and Zhang, J.L. (2008) The (G’/G)-Expansion Method and Travelling Wave Solutions of Nonlinear Evolution Equations in Mathematical Physics. Physics Letters A, 372, 417-423.
[2] 王明新. 非线性抛物形方程[M]. 北京: 科学出版社, 1993.
[3] 黄正洪, 夏莉. RLW-Burgers方程行波解的性质[J]. 重庆师范学院学报(自然科学版), 1998, 15(1): 24-28.
[4] 谈骏渝. RLW-Burgers方程的一类解析解[J]. 数学的实践与认识, 2001, 31(5): 545-549.
[5] 刘金枝, 吴爱祥. RLW-Burgers方程的显式行波解[J]. 南华大学学报(自然科学版), 2004, 18(3): 18-20.
[6] 鲍春玲, 苏道, 毕力格, 韩雁清. RLW-Burgers方程的势对称及其精确解[J]. 应用数学进展, 2016, 5(1): 112-120.
[7] Wang, M.L., Zhang, J.L. and Li, X.Z. (2008) Application of the (G’/G)-Expansion to Travelling Wave Solutions of the Broer-Kaup and the Approximate Long Water Wave Equations. Applied Ma-thematics and Computation, 206, 321-326.
[8] Li, L.X. and Wang, M.L. (2009) The (G’/G)-Expansion Method and Travelling Wave Solutions for a Higher-Order Nonlinear Schrodinger Equation. Applied Mathematics and Computation, 208, 440-445.
[9] 邢秀芝, 杨红艳, 卜春霞. 利用推广的(G’/G)展开法求解(2+1)维BBM方程[J]. 数学的实践与认识, 2011, 41(16): 240-243.
[10] 王鑫. 一类非线性偏微分方程的精确解[J]. 应用数学, 2013, 26(3): 521-525.
[11] 曹瑞. 一类广义Zakharov方程的精确行波解[J]. 数学杂志, 2013, 33(5): 837-843.