秋季高原切变线的统计特征及环流形势分析
Statistical Characteristics and Circulation Situation of Shear Line in Autumn Tibet Plateau
DOI: 10.12677/CCRL.2017.63023, PDF, HTML, XML, 下载: 1,362  浏览: 3,045  国家自然科学基金支持
作者: 韩林君, 冯鑫媛, 白爱娟:成都信息工程大学,四川 成都
关键词: 高原切变线横切变线竖切变线统计特征环流形势Plateau Shear Line Transverse Shear Line Vertical Shear Line Statistical Characteristics Circulation Patterns
摘要: 高原切变线是青藏高原地区强降水和暴雪天气的主要影响系统。本文利用0.5˚ × 0.5˚格点的CFSR (Climate Forecast System Reanalysis)再分析资料,对1979~2010年秋季(9~11月) 500 hPa高原切变线的空间分布、时间分布和移出次数等特征进行了统计分析,并根据横、竖切变线的天气个例,对比讨论了不同切变线的基本环流形势特征。分析结果如下:统计时段内,秋季高原切变线共出现146次,其中横切变线130次,且多初生于高原中西部,竖切变线16次,多初生于高原中东部。分析高原切变线的时间分布,发现秋季9月生成次数最多,11月最少,且主要生成在北京时间23时至次日02时之间的前半夜。对秋季高原切变线的持续时间进行分析,发现其持续时间主要集中在12小时以内。移出高原的切变线很少,占总次数的10.96%,其中,大部分竖切变线会移出高原。通过对两类切变线天气个例的500 hPa环流形势进行对比分析,发现500 hPa西太平洋副高外围西伸至高原,高原北部出现负涡度中心时,易生成横切变线,横切变线与涡度零线平行,两侧南湿北干。与横切变线对比,西太平洋副高及其外围呈稳定的经向高压坝时易出现竖切变线,竖切变线水平涡度梯度明显,湿度梯度较弱。
Abstract: Plateau shear line is the main influence system of heavy rainfall and blizzard weather in Qing-hai-Tibet Plateau. Using the CFSR reanalysis data in 0.5˚ × 0.5˚ grid statistically analyzed the shear lines spatial distribution, time distribution and the number of removal times in autumn (September-November )of 1979~2010. And the basic circulation situation of different shear lines is discussed and compared. The results are as follows: in autumn, there are 146 times of shear lines appearing in the plateau with 130 times of transverse shear line and 16 times of vertical shear line. In the meanwhile, most vertical shear lines are found in the middle and eastern part of the plateau; transverse shear lines mainly distribute in middle and western plateau. The autumn plateau shear lines are mainly produced from 23 PM to the 02AM (Beijing time). The number of shear lines removal from the plateau is very small, accounting for 10.96% in the total amount. Through the comparative analysis of the 500 hPa circulation situation of two types of shear line, we found that the partial easterly winds in the northern part of the plateau and the southward airflow from the Bay of Bengal meet on the plateau and form the main circulation situation of the transversal line. The periphery of 500 hPa subtropical high and the westerly belt overlapped with high pressure ridge conducive to vertical shear line.
文章引用:韩林君, 冯鑫媛, 白爱娟. 秋季高原切变线的统计特征及环流形势分析[J]. 气候变化研究快报, 2017, 6(3): 215-225. https://doi.org/10.12677/CCRL.2017.63023

参考文献

[1] 何光碧, 师锐. 三次高原切变线过程演变特征及其对降水的影响[J]. 高原气象, 2014, 33(3): 615-625.
[2] 郁淑华, 高文良, 彭骏. 近13年青藏高原切变线活动及其对中国降水影响的若干统计[J]. 高原气象, 2013, 32(6): 1527-1537.
[3] 何光碧, 高文良, 屠妮妮. 2000~2007年夏季青藏高原低涡切变线观测事实分析[J]. 高原气象, 2009, 28(3): 549-556.
[4] 师锐. 移出与未移出高原的高原切变线背景环流对比分析[J]. 高原气象, 2011, 30(6): 1453-1461.
[5] 徐国昌. 500hpa切变线的天气气候特征[J]. 高原气象, 1984, 3(1): 38-43.
[6] 郁淑华, 骆红. 青藏高原上低槽与切变线动能收支的个例分析[J]. 高原气象, 1993, 12(3): 251-256.
[7] 何光碧, 师锐. 夏季青藏高原不同类型切变线的动力、热力特征分析[J]. 高原气象, 2011, 30(3): 568-575.
[8] 刘富明, 潘平山. 青藏高原横切变线南移的研究[J]. 高原气象, 1987, 6(1): 56-64.