AP  >> Vol. 7 No. 8 (August 2017)

    The Role of Hippocampus in Contextual Fear Conditioning

  • 全文下载: PDF(642KB) HTML   XML   PP.967-977   DOI: 10.12677/AP.2017.78121  
  • 下载量: 276  浏览量: 407  



背根海马腹侧海马情景情景恐惧Dorsal Hippocampus Ventral Hippocampus Context Contextual Fear



Substantial evidence suggests the dorsal hippocampus play an important role in spatial learning and memory formation. Whereas, the ventral hippocampus is related with stress, emotion and affect. However, studies in the contextual fear conditioning paradigm always produce inconsistent findings. This article discussed the effect of different study methods such as damage or inactivation ways, training procedures as well as the boundary of the dorsal hippocampus and ventral zone. The present review shows that the discrepancy about the function of the hippocampus in the contextual fear conditioning paradigm might be caused by different lesion and inactivation methods, the number of shocks, all training in one session or scattered over a series of sessions, as well as the boundary of dorsal and ventral hippocampus. The way to break through the bottleneck of traditional research is to find out a more reliable, effective and accurate method.

王夏青, 陈伟海 (2017). 海马结构在条件化情景恐惧过程中的作用. 心理学进展, 7(8), 967-977. https://doi.org/10.12677/AP.2017.78121


[1] 刘芳, 李葆明(2006). 学习和记忆研究中常用的脑区功能损毁和失活方法. 中国行为医学科学, 15(3), 222-223.
[2] Ambrogi, L. C., Baldi, E., Bucherelli, C., Sacchetti, B., & Tassoni, G. (1999). Neural Topography and Chronology of Memory Consolidation: A Review of Functional Inactivation Findings. Neurobiology of Learning and Memory, 71, 1-18.
[3] Anagnostaras, S. G., Maren, S., & Fanselow, M. S. (1999). Temporally Graded Retrograde Amnesia of Contextual Fear after Hippocampal Damage in Rats: Within-Subjects Examination. The Journal of Neuroscience, 19, 1106.
[4] Ballesteros, C. I., de Oliveira, G. B., Maisonette, S., & Landeira-Fernandez, J. (2014). Effect of Dorsal and Ventral Hippocampal Lesions on Contextual Fear Conditioning and Unconditioned Defensive Behavior Induced by Electrical Stimulation of the Dorsal Periaqueductal Gray. PLoS One, 9, e83342. https://doi.org/10.1371/journal.pone.0083342
[5] Bast, T., Zhang, W. N., & Feldon, J. (2001). The Ventral Hippocampus and Fear Conditioning In Rats. Different Anterograde Amnesias of Fear after Tetrodotoxin Inactivation and Infusion of the GABA(A) Agonist Muscimol. Experimental Brain Research, 139, 39-52. https://doi.org/10.1007/s002210100746
[6] Chang, S., Chen, D., & Liang, K. C. (2008). Infusion of Lidocaine into the Dorsal Hippocampus before or after the Shock Training Phase Impaired Conditioned Freezing in a Two-Phase Training Task of Contextual Fear Conditioning. Neurobiology of Learning and Memory, 89, 95-105. https://doi.org/10.1016/j.nlm.2007.07.012
[7] Chang, S., & Liang, K. C. (2012). Roles of Hippocampal GABAA and Muscarinic Receptors in Consolidation of Context Memory and Context-Shock Association in Contextual Fear Conditioning: A Double Dissociation Study. Neurobiology of Learning and Memory, 98, 17-24. https://doi.org/10.1016/j.nlm.2012.04.004
[8] Chang, S., & Liang, K. C. (2017). The Hippocampus Integrates Context and Shock into a Configural Memory in Contextual Fear Conditioning. Hippocampus, 27, 145-155. https://doi.org/10.1002/hipo.22679
[9] Chia, C., & Otto, T. (2013). Hippocampal Arc (Arg3.1) Expression Is Induced by Memory Recall and Required for Memory Reconsolidation in Trace Fear Conditioning. Neurobiology of Learning and Memory, 106, 48-55. https://doi.org/10.1016/j.nlm.2013.06.021
[10] Cox, D., Czerniawski, J., Ree, F., & Otto, T. (2013). Time Course of Dorsal and Ventral Hippocampal Involvement in the Expression of Trace Fear Conditioning. Neurobiology of Learning and Memory, 106, 316-323. https://doi.org/10.1016/j.nlm.2013.05.009
[11] Czerniawski, J., Ree, F., Chia, C., & Otto, T. (2012). Dorsal versus Ventral Hippocampal Contributions to Trace and Contextual Conditioning: Differential Effects of Regionally Selective NMDA Receptor Antagonism on Acquisition and Expression. Hippocampus, 22, 1528-1539. https://doi.org/10.1002/hipo.20992
[12] Daumas, S., Halley, H., Francés, B., & Lassalle, J. (2004). Encoding, Consolidation, and Retrieval of Contextual Memory: Differential Involvement of Dorsal CA3 and CA1 Hippocampal Subregions. Learning & Memory, 12, 375-382. https://doi.org/10.1101/lm.81905
[13] Esclassan, F., Coutureau, E., Di Scala, G., & Marchand, A. R. (2009). Differential Contribution of Dorsal and Ventral Hippocampus to Trace and Delay Fear Conditioning. Hippocampus, 19, 33-44. https://doi.org/10.1002/hipo.20473
[14] Fanselow, M. S. (1990). Factors Governing One-Trial Contextual Conditioning. Animal Learning & Behavior, 18, 264-270. https://doi.org/10.3758/BF03205285
[15] Fanselow, M. S., & Dong, H. W. (2010). Are the Dorsal and Ventral Hippocampus Functionally Distinct Structures? Neuron, 65, 7-19. https://doi.org/10.1016/j.neuron.2009.11.031
[16] Ferbinteanu, J., Ray, C., & McDonald, R. J. (2003). Both Dorsal and Ventral Hippocampus Contribute to Spatial Learning in Long-Evans Rats. Neuroscience Letters, 345, 131-135. https://doi.org/10.1016/S0304-3940(03)00473-7
[17] Frankland, P. W., Cestari, V., Filipkowski, R. K., McDonald, R. J., & Silva, A. J. (1998). The Dorsal Hippocampus Is Essential for Context Discrimination but not for Contextual Conditioning. Behavioral Neuroscience, 112, 863-874. https://doi.org/10.1037/0735-7044.112.4.863
[18] Gewirtz, J. C., Mcnish, K. A., & Davis, M. (2000). Is the Hippocampus Necessary for Contextual Fear Conditioning? Behavioural Brain Research, 110, 83. https://doi.org/10.1016/S0166-4328(99)00187-4
[19] Glenn, M. J., Nesbitt, C., & Mumby, D. G. (2003). Perirhinal Cortex Lesions Produce Variable Patterns of Retrograde Amnesia in Rats. Behavioural Brain Research, 141, 183-193. https://doi.org/10.1016/S0166-4328(02)00377-7
[20] Good, M., & Honey, R. C. (1991). Conditioning and Contextual Retrieval in Hippocampal Rats. Behavioral Neuroscience, 105, 499-509. https://doi.org/10.1037/0735-7044.105.4.499
[21] Gulbrandsen, T. L., Sparks, F. T., & Sutherland, R. J. (2013). Interfering with Post-Learning Hippocampal Activity Does Not Affect Long-Term Consolidation of a Context Fear Memory outside the Hippocampus. Behavioural Brain Research, 240, 103-109. https://doi.org/10.1016/j.bbr.2012.11.027
[22] Henke, P. G. (1990). Hippocampal Pathway to the Amygdala and Stress Ulcer Development. Brain Research Bulletin, 25, 691-695. https://doi.org/10.1016/0361-9230(90)90044-Z
[23] Hornberger, M., Mohamed, A., Miller, L., Watson, J., Thayer, Z., & Hodges, J. R. (2010). Focal Retrograde Amnesia: Extending the Clinical Syndrome of Transient Epileptic Amnesia. Journal of Clinical Neuroscience, 17, 1319-1321. https://doi.org/10.1016/j.jocn.2010.03.005
[24] Hunsaker, M. R., & Kesner, R. P. (2008). Dissociations across the Dorsal-Ventral Axis of CA3 and CA1 for Encoding and Retrieval of Contextual and Auditory-Cued Fear. Neurobiology of Learning and Memory, 89, 61-69. https://doi.org/10.1016/j.nlm.2007.08.016
[25] Isaac, J. T., Buchanan, K. A., Muller, R. U., & Mellor, J. R. (2009). Hippocampal Place Cell Firing Patterns Can Induce Long-Term Synaptic Plasticity in Vitro. The Journal of Neuroscience, 29, 6840-6850. https://doi.org/10.1523/JNEUROSCI.0731-09.2009
[26] Kim, J. J., & Fanselow, M. S. (1992). Modality-Specific Retrograde Amnesia of Fear. Science, 256, 675-677. https://doi.org/10.1126/science.1585183
[27] Kjelstrup, K. G., Tuvnes, F. A., Steffenach, H. A., Murison, R., Moser, E. I., & Moser, M. B. (2002). Reduced Fear Expression after Lesions of the Ventral Hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 99, 10825-10830. https://doi.org/10.1073/pnas.152112399
[28] Lehmann, H., Lacanilao, S., & Sutherland, R. J. (2007). Complete or Partial Hippocampal Damage Produces Equivalent Retrograde Amnesia for Remote Contextual Fear Memories. European Journal of Neuroscience, 25, 1278-1286. https://doi.org/10.1111/j.1460-9568.2007.05374.x
[29] Lehmann, H., & McNamara, K. C. (2011). Repeatedly Reactivated Memories Become More Resistant to Hippocampal Damage. Learning & Memory, 18, 132-135. https://doi.org/10.1101/lm.2000811
[30] Lehmann, H., Rourke, B. K., Booker, A., & Glenn, M. J. (2013). Single Session Contextual Fear Conditioning Remains Dependent on the Hippocampus despite an Increase in the Number of Context-Shock Pairings during Learning. Neurobiology of Learning and Memory, 106, 294-299. https://doi.org/10.1016/j.nlm.2012.10.011
[31] Liu, P., Zheng, Y., Smith, P. F., & Bilkey, D. K. (2003). Changes in NOS Protein Expression and Activity in the Rat Hippocampus, Entorhinal and Postrhinal Cortices after Unilateral Electrolytic Perirhinal Cortex Lesions. Hippocampus, 13, 561- 571. https://doi.org/10.1002/hipo.10112
[32] Maren, S., Aharonov, G., & Fanselow, M. S. (1997). Neurotoxic Lesions of the Dorsal Hippocampus and Pavlovian Fear Conditioning in Rats. Behavioural Brain Research, 88, 261-274. https://doi.org/10.1016/S0166-4328(97)00088-0
[33] Maren, S., & Fanselow, M. S. (1997). Electrolytic Lesions of the Fimbria/Fornix, Dorsal Hippocampus, or Entorhinal Cortex Produce Anterograde Deficits in Contextual Fear Conditioning in Rats. Neurobiology of Learning and Memory, 67, 142- 149. https://doi.org/10.1006/nlme.1996.3752
[34] Maren, S., & Holt, W. G. (2004). Hippocampus and Pavlovian Fear Conditioning in Rats: Muscimol Infusions into the Ventral, but Not Dorsal, Hippocampus Impair the Acquisition of Conditional Freezing to an Auditory Conditional Stimulus. Behavioral Neuroscience, 118, 97-110. https://doi.org/10.1037/0735-7044.118.1.97
[35] Maren, S., Phan, K. L., & Liberzon, I. (2013). The Contextual Brain: Implications for Fear Conditioning, Extinction and Psychopathology. Nature Reviews Neuroscience, 14, 417-428. https://doi.org/10.1038/nrn3492
[36] Matus-Amat, P., Higgins, E. A., Barrientos, R. M., & Rudy, J. W. (2004). The Role of the Dorsal Hippocampus in the Acquisition and Retrieval of Context Memory Representations. The Journal of Neuroscience, 24, 2431-2439. https://doi.org/10.1523/JNEUROSCI.1598-03.2004
[37] Matus-Amat, P., Higgins, E. A., Sprunger, D., Wright-Hardesty, K., & Rudy, J. W. (2007). The Role of Dorsal Hippocampus and Basolateral Amygdala NMDA Receptors in the Acquisition and Retrieval of Context and Contextual Fear Memories. Behavioral Neuroscience, 121, 721-731. https://doi.org/10.1037/0735-7044.121.4.721
[38] Milton, F., Muhlert, N., Pindus, D. M., Butler, C. R., Kapur, N., Graham, K. S. et al. (2010). Remote Memory Deficits in Transient Epileptic Amnesia. Brain, 133, 1368-1379. https://doi.org/10.1093/brain/awq055
[39] Moser, M. B., Moser, E. I., Forrest, E., Andersen, P., & Morris, R. G. (1995). Spatial Learning with a Minislab in the Dorsal Hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 92, 9697-9701. https://doi.org/10.1073/pnas.92.21.9697
[40] Murty, V. P., Ritchey, M., Adcock, R. A., & LaBar, K. S. (2010). FMRI Studies of Successful Emotional Memory Encoding: A Quantitative Meta-Analysis. Neuropsychologia, 48, 3459-3469. https://doi.org/10.1016/j.neuropsychologia.2010.07.030
[41] Pentkowski, N. S., Blanchard, D. C., Lever, C., Litvin, Y., & Blanchard, R. J. (2006). Effects of Lesions to the Dorsal and Ventral Hippocampus on Defensive Behaviors in Rats. European Journal of Neuroscience, 23, 2185-2196. https://doi.org/10.1111/j.1460-9568.2006.04754.x
[42] Phillips, R. G., & LeDoux, J. E. (1994). Lesions of the Dorsal Hippocampal Formation Interfere with Background but Not Foreground Contextual Fear Conditioning. Learning & Memory, 1, 34-44.
[43] Poppenk, J., Evensmoen, H. R., Moscovitch, M., & Nadel, L. (2013). Long-Axis Specialization of the Human Hippocampus. Trends in Cognitive Sciences, 17, 230-240. https://doi.org/10.1016/j.tics.2013.03.005
[44] Pothuizen, H. H., Zhang, W. N., Jongen-Relo, A. L., Feldon, J., & Yee, B. K. (2004). Dissociation of Function between the Dorsal and the Ventral Hippocampus in Spatial Learning Abilities of the Rat: A Within-Subject, Within-Task Comparison of Reference and Working Spatial Memory. European Journal of Neuroscience, 19, 705-712. https://doi.org/10.1111/j.0953-816X.2004.03170.x
[45] Quinn, J. J., Loya, F., Ma, Q. D., & Fanselow, M. S. (2005). Dorsal Hippocampus NMDA Receptors Differentially Mediate Trace and Contextual Fear Conditioning. Hippocampus, 15, 665-674. https://doi.org/10.1002/hipo.20088
[46] Rogers, J. L., Hunsaker, M. R., & Kesner, R. P. (2006). Effects of Ventral and Dorsal CA1 Subregional Lesions on Trace Fear Conditioning. Neurobiology of Learning and Memory, 86, 72-81. https://doi.org/10.1016/j.nlm.2006.01.002
[47] Rudy, J. W., & Matus-Amat, P. (2005). The Ventral Hippocampus Supports a Memory Representation of Context and Contextual Fear Conditioning: Implications for a Unitary Function of the Hippocampus. Behavioral Neuroscience, 119, 154- 163. https://doi.org/10.1037/0735-7044.119.1.154
[48] Rudy, J. W., & O’Reilly, R. C. (2001). Conjunctive Representations, the Hippocampus, and Contextual Fear Conditioning. Cognitive Affective & Behavioral Neuroscience, 1, 66-82. https://doi.org/10.3758/CABN.1.1.66
[49] Satpute, A. B., Mumford, J. A., Naliboff, B. D., & Poldrack, R. A. (2012). Human Anterior and Posterior Hippocampus Respond Distinctly to State and Trait Anxiety. Emotion, 12, 58-68. https://doi.org/10.1037/a0026517
[50] Schenberg, E. E., & Oliveira, M. G. M. (2008). Effects of Pre or Posttraining Dorsal Hippocampus D-AP5 Injection on Fear Conditioning to Tone, Background, and Foreground Context. Hippocampus, 18, 1089-1093. https://doi.org/10.1002/hipo.20475
[51] Sparks, F. T., Lehmann, H., Hernandez, K., & Sutherland, R. J. (2011). Suppression of Neurotoxic Lesion-Induced Seizure Activity: Evidence for a Permanent Role for the Hippocampus in Contextual Memory. PLoS One, 6, e27426. https://doi.org/10.1371/journal.pone.0027426
[52] Sparks, F. T., Spanswick, S. C., Lehmann, H., & Sutherland, R. J. (2013). Neither Time nor Number of Context-Shock Pairings Affect Long-Term Dependence of Memory on Hippocampus. Neurobiology of Learning and Memory, 106, 309-315. https://doi.org/10.1016/j.nlm.2013.05.008
[53] Squire, L. R. (1992). Memory and the Hippocampus: A Synthesis from Findings with Rats, Monkeys, and Humans. Psychological Review, 99, 195-231. https://doi.org/10.1037/0033-295X.99.2.195
[54] Sutherland, R. J., O’Brien, J., & Lehmann, H. (2008). Absence of Systems Consolidation of Fear Memories after Dorsal, Ventral, or Complete Hippocampal Damage. Hippocampus, 18, 710-718. https://doi.org/10.1002/hipo.20431
[55] Sutherland, R. J., Sparks, F. T., & Lehmann, H. (2010). Hippocampus and Retrograde Amnesia in the Rat Model: A Modest Proposal for the Situation of Systems Consolidation. Neuropsychologia, 48, 2357-2369. https://doi.org/10.1016/j.neuropsychologia.2010.04.015
[56] Sutherland, R. J., Weisend, M. P., Mumby, D., Astur, R. S., Hanlon, F. M., Koerner, A. et al. (2001). Retrograde Amnesia after Hippocampal Damage: Recent vs. Remote Memories in two Tasks. Hippocampus, 11, 27-42. https://doi.org/10.1002/1098-1063(2001)11:1<27::AID-HIPO1017>3.0.CO;2-4
[57] Vertes, R. P. (2006). Interactions among the Medial Prefrontal Cortex, Hippocampus and Midline Thalamus in Emotional and Cognitive Processing in the Rat. Neuroscience, 142, 1-20. https://doi.org/10.1016/j.neuroscience.2006.06.027
[58] Wang, S. H., Teixeira, C. M., Wheeler, A. L., & Frankland, P. W. (2009). The Precision of Remote Context Memories Does Not Require the Hippocampus. Nature Neuroscience, 12, 253-255. https://doi.org/10.1038/nn.2263
[59] Wiltgen, B. J., Zhou, M., Cai, Y., Balaji, J., Karlsson, M. G., Parivash, S. N. et al. (2010). The Hippocampus Plays a Selective Role in the Retrieval of Detailed Contextual Memories. Current Biology, 20, 1336-1344. https://doi.org/10.1016/j.cub.2010.06.068
[60] Winocur, G., Frankland, P. W., Sekeres, M., Fogel, S., & Moscovitch, M. (2009). Changes in Context-Specificity during Memory Reconsolidation: Selective Effects of Hippocampal Lesions. Learning & Memory, 16, 722-729. https://doi.org/10.1101/lm.1447209
[61] Yoon, T., & Otto, T. (2007). Differential Contributions of Dorsal vs. Ventral Hippocampus to Auditory Trace Fear Conditioning. Neurobiology of Learning and Memory, 87, 464-475. https://doi.org/10.1016/j.nlm.2006.12.006