PAHs致毒机制及其微生物降解研究进展
Progress in Biodegradation and Mechanism of Carcinogenic of PAHs
DOI: 10.12677/AEP.2017.74044, PDF, HTML, XML, 下载: 2,175  浏览: 5,498  科研立项经费支持
作者: 邓 春, 赵红艳, 高美丽:西安交通大学生命科学与技术学院,生物科学与工程系生物医学信息工程教育部重点实验室,陕西 西安
关键词: 多环芳烃致毒机制微生物降解降解效率Polycyclic Aromatic Hydrocarbons Toxic Mechanism Microbial Degradation Degradation Efficiency
摘要: 多环芳烃是严重威胁人体健康并广泛存在于环境中的有机污染物,在相关研究的基础上,简要介绍了多环芳烃的性质和来源,深入探讨了多环芳烃的致毒机制,例如多环芳烃介导DNA加合物形成,或者在表观遗传学层面通过改变遗传物质引起病变等。介于多环芳烃毒性强、难降解等特点,与物理、化学降解方法相比,微生物降解显示出极大优越性。继而阐述了微生物降解多环芳烃的经典途径,其中包括细菌和真菌对多环芳烃的降解。并从多环芳烃自身理化性质,微生物及其群落的生物可利用性,环境因子等方面入手,着重总结了提高微生物降解多环芳烃效率的方法。同时,以环境中多环芳烃污染的防治、个体对多环芳烃易感性等方面为出发点,提出了降低多环芳烃对人体、环境的毒害作用的几点建议,也对下一步的研究方向进行了展望,希望对相关的研究工作带来帮助。
Abstract: Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous pollutants, which are hazardous to human health. Based on the previous research, the properties and sources of PAHs were described briefly, and the mechanism of carcinogenic of PAHs was discussed thoroughly. For example, polycyclic aromatic hydrocarbons mediated the formation of DNA adducts, or PAHs by causing genetic materials changes at the level of epigenetics raised lesions, and so on. Given the strong toxicity and refractory characteristics of PAHs, microbial degradation showing a great of superiority compared to the approaches of physical and chemical to degradate PAHs. Then the classic biodegration pathway of PAHs of fungus and bacteria was elaborated. From the aspects of PAHs’ physico-chemical properties and bioavailability of microorganisms or their communities, as well as other aspects of environmental factors, the primary methods to improve the efficiency of biodegradation were summarized. In order to reduce the toxic effect of PAHs on human health and the environment, we proposed some advice from aspects of pollution prevention and control along with the individual susceptibility of PAHs simultaneously. This paper suggests further directions and hopes to bring help on further work.
文章引用:邓春, 赵红艳, 高美丽. PAHs致毒机制及其微生物降解研究进展[J]. 环境保护前沿, 2017, 7(4): 315-324. https://doi.org/10.12677/AEP.2017.74044

参考文献

[1] Montuori, P., Aurino, S., Garzonio, F., et al. (2016) Distribution, Sources and Ecological Risk Assessment of Polycyclic Aromatic Hydrocarbons in Water and Sediments from Tiber River and Estuary, Italy. Science of the Total Environment, 566-567, 1254-1267.
[2] Kislov, V.V., Sadovnikov, A.I. and Mebel, A.M. (2013) Formation Mechanism of Polycyclic Aromatic Hydrocarbons beyond the Second Aromatic Ring. The Journal of Physical Chemistry A, 117, 4794-4816.
https://doi.org/10.1021/jp402481y
[3] Sarria-Villa, R., Ocampo-Duque, W., Páez, M., et al. (2016) Presence of PAHs in Water and Sediments of the Colombian Cauca River during Heavy Rain Episodes, and Implications for Risk Assessment. Science of the Total Environment, 540, 455-465.
[4] Daniel, C.R., Schwartz, K.L., Colt, J.S., et al. (2011) Meat-Cooking Mutagens and Risk of Renal Cell Carcinoma. British Journal of Cancer, 105, 1096-1104.
https://doi.org/10.1038/bjc.2011.343
[5] Ribière, C., Peyret, P., Parisot, N., et al. (2016) Oral Exposure to Environmental Pollutant Benzo[a]pyrene Impacts the Intestinal Epithelium and Induces Gut Microbial Shifts in Murine Model. Scientific Reports, 6, Article No. 31027.
https://doi.org/10.1038/srep31027
[6] Seo, J.S., Keum, Y.S., Harada, R.M., et al. (2007) Isolation and Characterization of Bacteria Capable of Degrading Polycyclic Aromatic Hydrocarbons (PAHs) and Organophosphorus Pesticides from PAH-Contaminated Soil in Hilo, Hawaii. Journal of Agricultural and Food Chemistry, 55, 5383-5389.
https://doi.org/10.1021/jf0637630
[7] Shen, H., Tao, S., Liu, J., et al. (2014) Global Lung Cancer Risk from PAH Exposure Highly Depends on Emission Sources and Individual Susceptibility. Scientific Reports, 4, 1-8.
[8] Abdel-Shafy, H.I. and Mansour, M.S.M. (2016) A Review on Polycyclic Aromatic Hydrocarbons: Source, Environmental Impact, Effect on Human Health and Remediation. Egyptian Journal of Petroleum, 25, 107-123.
[9] Samburova, V., Connolly, J., Gyawali, M., et al. (2016) Polycyclic Aromatic Hydrocarbons in Biomass-Burning Emissions and Their Contribution to Light Absorption and Aerosol Toxicity. Science of the Total Environment, 568, 391- 401.
[10] Moorthy, B., Chu, C. and Carlin, D.J. (2015) Polycyclic Aromatic Hydrocarbons: From Metabolism to Lung Cancer. Toxicological Sciences, 145, 5-15.
https://doi.org/10.1093/toxsci/kfv040
[11] Genies, C., Jullien, A., Lefebvre, E., et al. (2016) Inhibition of the Formation of Benzo[a]pyrene Adducts to DNA in A549 Lung Cells Exposed to Mixtures of Polycyclic Aromatic Hydrocarbons. Toxicology in Vitro, 35, 1-10.
[12] Derry, M.M., Raina, K. and Agarwal, R. (2013) Identifying Molecular Targets of Lifestyle Modifications in Colon Cancer Prevention. Frontiers in Oncology, 3, 1-20.
https://doi.org/10.3389/fonc.2013.00119
[13] Gao, M., Li, Y., Sun, Y., et al. (2011) A Common Carcinogen Benzo[a]pyrene Causes p53 Overexpression in Mouse Cervix via DNA Damage. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 724, 69-75.
[14] Gao, M., Li, Y., Ji, X., et al. (2016) Disturbance of Bcl-2, Bax, Caspase-3, Ki-67 and C-myc Expression in Acute and Subchronic Exposure to Benzo(a)pyrene in Cervix. Actahistochemica, 118, 63-73.
[15] He, J., Ji, X., Li, Y., et al. (2016) Subchronic Exposure of Benzo(a)pyrene Interferes with the Expression of Bcl-2, Ki-67, C-myc and p53, Bax, Caspase-3 in Sub-Regions of Cerebral Cortex and Hippocampus. Experimental and Toxicologic Pathology, 68, 149-156.
[16] Boada, L.D., Henríquez-Hernández, L.A., Navarro, P., et al. (2015) Exposure to Polycyclic Aromatic Hydrocarbons (PAHs) and Bladder Cancer: Evaluation from a Gene-Environment Perspective in a Hospital-Based Case-Control Study in the Canary Islands (Spain). International Journal of Occupational and Environmental Health, 21, 23-30.
https://doi.org/10.1179/2049396714Y.0000000085
[17] Wang, S., Chanock, S., Tang, D., et al. (2008) Assessment of Interactions between PAH Exposure and Genetic Polymorphisms on PAH-DNA Adducts in African American, Dominican, and Caucasian Mothers and Newborns. Cancer Epidemiology Biomarkers & Prevention, 17, 405-413.
https://doi.org/10.1158/1055-9965.EPI-07-0695
[18] Liu, N. and Li, Z.W. (2016) Research Progress of the Gene Polymor-phisms of Metabolic Enzyme Related to Polycyclic Aromatic Hydrocarbons Risk of Preterm Birth. Chinese Journal of Preventive Medicine, 50, 463-467.
[19] Gao, M., Li, Y., Xue, X., et al. (2013) Impact of AhR, CYP1A1 and GSTM1 Genetic Polymorphisms on TP53 R273G Mutations in Individuals Exposed to Polycyclic Aromatic Hydrocarbons. Asian Pacific Journal of Cancer Prevention, 15, 2699-2705.
[20] Kim, Y.H., Lee, Y.S., Lee, D.H., et al. (2016) Polycyclic Aromatic Hydrocarbons Are Associated with Insulin Receptor Substrate 2 Methylation in Adipose Tissues of Korean Women. Environmental Research, 150, 47-51.
[21] Gao, M., Li, Y., Long, J., et al. (2011) Induction of Oxidative Stress and DNA Damage in Cervix in Acute Treatment with Benzo[a]pyrene. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 719, 52-59.
[22] Gao, M., Li, Y., Sun, Y., et al. (2011) Benzo[a]pyrene Exposure Increases Toxic Biomarkers and Morphological Disorders in Mouse Cervix. Basic & Clinical Pharmacology & Toxicology, 109, 398-406.
https://doi.org/10.1158/1055-9965.EPI-07-0695
[23] Peng, Q., Chen, H. and Huo, J.R. (2016) Alcohol Consumption and Corresponding Factors: A Novel Perspective on the Risk Factors of Esophageal Cancer (Review). Oncology Letters, 11, 3231-3239.
https://doi.org/10.3892/ol.2016.4401
[24] Gao, M., Li, Y., Zheng, A., et al. (2014) Lymphocyte Oxidative Stress/Genotoxic Effects Are Related to Serum IgG and IgA Levels in Coke Oven Workers. The Scientific World Journal, 2014, Article ID: 801346.
[25] Gao, M.L., Chen, L., Li, Y.F., et al. (2013) Synergistic Increase of Oxidative Stress and Tumor Markers in PAH-Exposed Workers. Asian Pacific Journal of Cancer Prevention, 15, 7105-7112.
[26] Gao, M., Long, J., Li, Y., et al. (2010) Mitochondrial Decay Is Involved in BaP-Induced Cervical Damage. Free Radical Biology and Medicine, 49, 1735-1745.
[27] Ji, X., Li, Y., He, J., et al. (2016) Depletion of Mitochondrial Enzyme System in Liver, Lung, Brain, Stomach and Kidney Induced by Benzo(a)pyrene. Environmental Toxicology and Pharmacology, 43, 83-93.
[28] Rao, P.S. and Kumar, S. (2014) Polycyclic Aromatic Hydrocarbons and Cytochrome P450 in HIV Pathogenesis. Frontiers in Microbiology, 6, 550.
[29] Harris, K.L., Banks, L.D., Mantey, J.A., et al. (2013) Bioaccessibility of Polycyclic Aromatic Hydrocarbons: Relevance to Toxicity and Carcinogenesis. Expert Opinion on Drug Metabolism and Toxicology, 9, 1465-1480.
https://doi.org/10.1517/17425255.2013.823157
[30] Flesher, J.W. and Lehner, A.F. (2016) Structure, Function and Carcinogenicity of Metabolites of Methylated and Non- Methylated Polycyclic Aromatic Hydrocarbons: A Comprehensive Review. Toxicology Mechanisms and Methods, 26, 151-179.
https://doi.org/10.3109/15376516.2015.1135223
[31] Tseng, H.S., Liu, S.P., Uang, S.N., et al. (2016) Cancer Risk of Incremental Exposure to Polycyclic Aromatic Hydrocarbons in Electrocautery Smoke for Mastectomy Personnel. World Journal of Surgical Oncology, 12, 1-8.
https://doi.org/10.1186/1477-7819-12-31
[32] Chen, R.J., Chang, L.W., Lin, P., et al. (2011) Epigenetic Effects and Molecular Mechanisms of Tumorigenesis Induced by Cigarette Smoke: An Overview. Journal of Oncology, 2011, Article ID: 654931.
[33] Cerniglia, C.E. (1992) Biodegradation of Polycyclic Aromatic Hydrocarbons. Biodegradation, 3, 351-368.
https://doi.org/10.1007/BF00129093
[34] 侯晓鹏, 李春华, 叶春, 等. 不同电子受体作用下微生物降解多环芳烃研究进展[J]. 环境工程技术学报, 2016, 6(1): 78-84.
[35] 思显佩, 曹霞霞, 熊建功. 微生物降解多环芳烃的影响因素及机理研究进展[J]. 重庆工商大学学报: 自然科学版, 2009, 26(5): 457-461.
[36] 孙萍, 高永超, 张强, 等. 多环芳烃污染土壤微生物修复技术[J]. 安徽农业科学, 2014, 42(19): 6220-6223.
[37] Kelley, I. and Cerniglia, C.E. (1995) Degradation of a Mixture of High Molecular-Weight Polycyclic Aromatic Hydrocarbons by a Mycobacterium Strain PYR-1. Soil Contamination, 4, 77-91.
https://doi.org/10.1080/15320389509383482
[38] Ye, D., Siddiqi, M.A., Maccubbin, A.E., et al. (1995) Degradation of Polynuclear Aromatic Hydrocarbons by Sphingomonas paucimobilis. Environmental Science & Technology, 30, 136-142.
https://doi.org/10.1021/es9501878
[39] Kanaly, R.A. and Harayama, S. (2000) Biodegradation of High-Molecular-Weight Polycyclic Aromatic Hydrocarbons by Bacteria. Journal of Bacteriology, 182, 2059-2067.
https://doi.org/10.1128/JB.182.8.2059-2067.2000
[40] 王涛, 蓝慧, 田云, 等. 多环芳烃的微生物降解机制研究进展[J]. 化学与生物工程, 2016, 33(2): 8-14.
[41] 孙明明, 滕应, 骆永明. 厌氧微生物降解多环芳烃研究进展[J]. 微生物学报, 2012, 52(8): 931-939.
[42] 吴宇澄, 林先贵. 多环芳烃污染土壤真菌修复进展[J]. 土壤学报, 2013, 50(6): 1191-1199.
[43] Xia, W., Du, Z., Cui, Q., et al. (2014) Biosurfactant Produced by Novel Pseudomonas sp. WJ6 with Biodegradation of n-Alkanes and Polycyclic Aromatic Hydrocarbons. Journal of Hazardous Materials, 276, 489-498.
[44] Wang, L., Li, F., Zhan, Y., et al. (2016) Shifts in Microbial Community Structure during in Situ Surfactant-Enhanced Bioremediation of Polycyclic Aromatic Hydrocar-bon-Contaminated Soil. Environmental Science and Pollution Research, 23, 14451-14461.
https://doi.org/10.1007/s11356-016-6630-4
[45] 计敏惠, 邹华, 杜玮, 等. 表面活性剂增效电动技术修复多环芳烃污染土壤[J]. 环境工程学报, 2016, 10(7): 3871- 3876.
[46] 马占青, 徐明仙, 余卫阳, 等. 天然介质材料富集微生物降解多环芳烃研究[J]. 人民黄河, 2010, 32(8): 56-58.
[47] 潘声旺, 刘灿, 黄方玉, 等. 多环芳烃胁迫下根系分泌物对根际微生物降解效能的影响[J]. 成都大学学报: 自然科学版, 2016, 35(1): 86-89.
[48] 刘鹏浩. 平菇对土壤中苊烯和苯并[a]蒽稳定性的影响[J]. 科技与创新, 2016(7): 106.
[49] 牛秋雅. 基于堆肥化和高效降解菌的多环芳烃降解研究[D]: [博士学位论文]. 长沙: 湖南大学, 2013.
[50] 王蕊. 蒽菲芘及其中间转化物的生物竞争代谢动力学特征研究[D]: [硕士学位论文]. 西安: 西安建筑科技大学, 2007.
[51] Alrumman, S.A., Hesham, A.E.L. and Alamri, S.A. (2016) Isolation, Fingerprinting and Genetic Identification of Indigenous PAHs Degrading Bacteria from Oil-Polluted Soils. Journal of Environmental Biology, 37, 75-81.
[52] 张慧敏. 高效降解多环芳烃-菲白腐真菌的筛选及其降解机理的初步研究[D]: [硕士学位论文]. 芜湖: 安徽工程大学, 2014.
[53] 陈明华. 低氧条件下多环芳烃降解菌的筛选及降解特性研究[D]: [硕士学位论文]. 上海: 东华大学, 2014.
[54] 郑天凌, 骆苑蓉, 曹晓星, 等. 高分子量多环芳烃-苯并[a]芘的生物降解研究进展[J]. 应用与环境生物学报, 2006, 12(6): 884-890.
[55] 徐香. 海洋环境中有机污染物降解机理及构效关系的理论研究[D]: [博士学位论文]. 青岛: 中国海洋大学, 2012.
[56] Cui, C., Li, Z., Qian, J., et al. (2016) Complete Genome of Martelella sp. AD-3, a Moderately Halophilic Polycyclic Aromatic Hydrocarbons-Degrading Bacterium. Journal of Biotechnology, 225, 29-30.
[57] Yun, S.H., Choi, C.W., Lee, S.Y., et al. (2014) Proteomic Characterization of Plasmid pLA1 for Biodegradation of Polycyclic Aromatic Hydrocarbons in the Marine Bacterium, Novosphingobium pentaromativorans US6-1. PLoS ONE, 9, e90812.
[58] Brimo, K., Garnier, P., Sun, S., et al. (2016) Using a Bayesian Approach to Improve and Calibrate a Dynamic Model of Polycyclic Aromatic Hydrocarbons Degradation in an Industrial Contaminated Soil. Environmental Pollution, 215, 27-37.
[59] Deary, M.E., Ekumankama, C.C. and Cummings, S.P. (2016) Development of a Novel Kinetic Model for the Analysis of PAH Biodegradation in the Presence of Lead and Cadmium Co-Contaminants. Journal of Hazardous Materials, 307, 240-252.