碳纳米管场发射电流饱和特性的研究进展
Research Progress of Carbon Nanotubes Field-Emission Current Saturation
DOI: 10.12677/APP.2017.78029, PDF, HTML, XML,  被引量 下载: 1,810  浏览: 4,402 
作者: 林 晨, 金玉丰:北京大学深圳研究生院,广东 深圳;北京大学微电子学研究院,微米/纳米加工技术国家级重点实验室,北京;张锦文*:北京大学微电子学研究院,微米/纳米加工技术国家级重点实验室,北京
关键词: 碳纳米管场发射电流饱和特性Carbon Nanotube Field-Emission Current Saturation
摘要: 从1995年碳纳米管电子场发射实验研究的首次报道到现在[1],因为结构独特,电学特性突出,尺寸微小以及长径比大,碳纳米管被认为是最具应用潜力和研究价值的场发射电子源之一[2]。同时,在较高场强下碳纳米管场发射电流表现出自饱和特性,这对于场发射显示技术是可遇不可求的优异特性,能够进一步降低功耗。本文主要从碳纳米管场发射的电流饱和特性入手,介绍了场解吸、接触电阻、空间电荷效应、临近碳纳米管间的互相作用和非金属局域态等五种可能导致场发射电流饱和的物理机理,对于分析和改进碳纳米管场发射器件性能具有重要意义。
Abstract: Since the first report of CNT (Carbon Nanotube) field emission in 1995 [1], CNT has shown the most application potential and research value as field emission source because of its unique structure, outstanding electrical properties, nano-scale and great aspect ratio. Meanwhile, the CNT field-emission current shows self-saturation feature under high electric field, which is a promising advantage for energy saving of FED (Field Emission Display) technology. This paper introduced five mechanisms responsible for CNT field-emission current saturation including field desorption, contacting resistance, space charge effect, neighboring nanotube interaction and non-metallic local states, which are very important for the analysis and improvement of CNT FE devices.
文章引用:林晨, 张锦文, 金玉丰. 碳纳米管场发射电流饱和特性的研究进展[J]. 应用物理, 2017, 7(8): 223-234. https://doi.org/10.12677/APP.2017.78029

参考文献

[1] de Heer, W.A., Châtelain, A. and Ugarte, D. (1995) A Carbon Nanotube Field-Emission Electron Source. Science, 270, 1179-1180.
https://doi.org/10.1126/science.270.5239.1179
[2] Calderon-Colon, X., et al. (2009) A Carbon Nanotube Field Emission Cathode with High Current Density and Long- Term Stability. Nanotechnology, 20, Article ID: 325707.
https://doi.org/10.1088/0957-4484/20/32/325707
[3] Iijima, S. (1991) Helical Microtubules of Graphitic Carbon. Nature, 354, 56-58.
https://doi.org/10.1038/354056a0
[4] Tran, P.D., et al. (2015) A Noble Metal-Free Proton-Exchange Membranefuel Cell Based on Bio-Inspired Molecular Catalysts. Chemical Science, 6, 2050.
https://doi.org/10.1039/C4SC03774J
[5] Ishikawa, M., et al. (2002) Carbon Nanotube as a Probe for Friction Force Microscopy. Physica B, 323, 184-186.
https://doi.org/10.1016/S0921-4526(02)00973-0
[6] Johnson, R.C. 以碳纳米管实现真正的3D芯片[J]. 集成电路应用, 2015(5): 38-39.
[7] Zeevi, G., et al. (2016) Automated Circuit Fabrication and Directcharacterization of Carbon Nanotube Vibrations. Nature Communication, 7, 12153.
https://doi.org/10.1038/ncomms12153
[8] Zheng, J., et al. (2015) Circuit Modeling of Cu/CNT Composite Through-Silicon Vias (TSV). Proceedings of 2015 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), Suzhou, 1-3 July 2015, 1-3.
https://doi.org/10.1109/IMWS-AMP.2015.7325040
[9] 史永胜, 等. 碳纳米管场致发射显示器的研究进展[J]. 材料导报, 2008, 22(8): 95-98.
[10] Kim, Y.C., et al. (2015) A 46-Inch Diagonal Carbon Nanotube Field Emissionbacklight for Liquid Crystal Display. Carbon, 91, 304-310.
https://doi.org/10.1016/j.carbon.2015.04.093
[11] Andersen, N.I., et al. (2015) Metal Oxides/CNT Nano-Composite Catalysts for Oxygenreduction/Oxygen Evolution in Alkaline Media. Applied Catalysis B: Environmental, 163, 623-627.
https://doi.org/10.1016/j.apcatb.2014.08.033
[12] Yoon, S., et al. (2015) Carbon Nanotube Film Anodes for Flexible Lithium Ion Batteries. Journal of Power Sources, 279, 495-501.
https://doi.org/10.1016/j.jpowsour.2015.01.013
[13] Herring, C. and Nichols, M.H. (1949) Thermionic Emission. Reviews of Modern Physics, 21, 185-227.
https://doi.org/10.1103/RevModPhys.21.185
[14] Spindt, C.A. (1968) A Thin-Film Field-Emission Cathode. Journal of Applied Physics, 39, 3504-3505.
https://doi.org/10.1063/1.1656810
[15] Bonard, J.M., et al. (2002) Field Emission of Individual Carbon Nanotubes in the Scanning Electron Microscope. Physical Review Letters, 89, Article ID: 197602.
https://doi.org/10.1103/PhysRevLett.89.197602
[16] Fowler, R.H. and Nordheim, L. (1928) Electron Emission in Intense Electric Fields. Royal Society, 119, 173-181.
https://doi.org/10.1098/rspa.1928.0091
[17] 王琪琨, 等. 碳纳米管场发射阴极的厚膜工艺研究[J]. 电子器件, 2004, 27(4): 543-546.
[18] 崔云康, 等. 大电流碳纳米管场发射阴极研究[J]. 强激光与粒子束, 2013, 25(6): 1509-1512.
[19] 乔宪武. 碳纳米管场发射性质的研究[D]: [硕士学位论文]. 兰州: 兰州理工大学, 2009.
[20] Wallash, A. and Levit, L. (2003) Electrical Breakdown and ESD Phenomena for Devices Withnanometer-to-Micron Gaps. Proceedings of SPIE, 4980, 87-96.
https://doi.org/10.1117/12.478191
[21] Dean, K.A. and Chalamala, B.R. (2000) Current Saturation Mechanisms in Carbon Nanotube Field Emitters. Applied Physics Letters, 76, 375-377.
https://doi.org/10.1063/1.125758
[22] Zhang, J.H., et al. (2006) Interaction between Carbon Nanotubes and Substrate and Its Implication on Field Emission Mechanism. Carbon, 44, 418-422.
https://doi.org/10.1016/j.carbon.2005.09.004
[23] Child, C.D. (1911) Discharge from Hot CaO. Physical Review Series I, 32, 492-511.
https://doi.org/10.1103/PhysRevSeriesI.32.492
[24] Barbour, J.P., Dolan, W.W., et al. (1953) Space-Charge Effects in Field Emission. Physical Review, 92, 45-54.
https://doi.org/10.1103/PhysRev.92.45
[25] Xu, N.S., et al. (2001) Vacuum Gap Dependence of Field Electron Emission Properties of Large Area Multi-Walled- carbon Nanotube Films. Journal of Physics D: Applied Physics, 34, 1597-1601.
https://doi.org/10.1088/0022-3727/34/11/307
[26] Collins, P.G. and Zettl, A. (1997) Unique Characteristics of Cold Cathode Carbon-Nanotube-Matrix Field Emitters. Physical Review B, 55, 9391-9399.
https://doi.org/10.1103/PhysRevB.55.9391
[27] Bonard, J.M., et al. (1998) Field Emission from Single-Wall Carbon Nanotube Films. Applied Physics Letters, 73, 918- 920.
https://doi.org/10.1063/1.122037
[28] Carroll, D.L., et al. (1997) Electronic Structure and Localized States at Carbon Nanotube Tips. Physical Review Letters, 78, 2811-2814.
https://doi.org/10.1103/PhysRevLett.78.2811
[29] Bonard, J.M. (1998) Field-Emission-Induced Luminescence from Carbon Nanotubes. Physical Review Letters, 81, 1441-1444.
https://doi.org/10.1103/PhysRevLett.81.1441