# 凸体的Steiner对称化的两个定理Two Theorems of Steiner Symmetrization on Convex Bodies

• 全文下载: PDF(384KB)    PP.368-372   DOI: 10.12677/PM.2017.75047
• 下载量: 114  浏览量: 172

In this paper, we mainly study sufficient conditions for Steiner symmetrization on convex bodies. Firstly, according to the properties of Steiner symmetrization, such as volume-preserving, convexity-preserving, monotonicity, surface area reduction and so on, we constructed a transformation on convex bodies. Secondly, in accordance to Steiner symmetrization’s characterization and concept, we proved that is Steiner symmetrization and came up with two homologous corollaries. Finally, we obtained two sufficient conditions for Steiner symmetrization.

 [1] Gruber, P. M. (2007) Convex and Discrete Geometry. Springer, Berlin, 168-179, 120-132. [2] 刘越. Steiner对称化及平面上经Steiner对称化保持直径的凸集[D]: [硕士学位论文]. 广州: 中山大学, 2009. [3] Klain, D.A. (2011) Steiner Symmetrization Using a Finite Set of Directions. Advances in Applied Mathematics, 48, 340-353. https://doi.org/10.1016/j.aam.2011.09.004 [4] Coupier, D. and Davydov, Y. (2014) Random Symmetrizations of Convex Bodies. Advances in Applied Probability, 46, 603-621. https://doi.org/10.1017/S000186780000728X [5] Bourgain, J., Lindenstrauss, J. and Milman, V. (1989) Estimates Related to Steiner Symmetrizations. In: Lindenstrauss, J. and Milman, V.D., Eds., Geometric Aspects of Functional Analysis, Lecture Notes in Mathematics, Vol. 1376, Springer, Berlin, Heidelberg, 264-273. https://doi.org/10.1007/BFb0090060 [6] Schneider, R. (1993) Convex Bodies: The Brunn-Minkowski Theory. Cambridge University Press, Cambridge. https://doi.org/10.1007/BFb0090060 [7] Falconer, K.J. (1976) A Result on the Steiner Symmetrization of a Compact Set. Journal of the London Mathematical Society, S2-14, 385-386. https://doi.org/10.1112/jlms/s2-14.3.385 [8] Bianchi, G., Gardner, R.J. and Gronchi, P. (2017) Symmetrization in Geometry. Advances in Mathematics, 306, 51-88. https://doi.org/10.1016/j.aim.2016.10.003 [9] Krantz, S.G. and Parks, H.R. (1999) The Geometry of Domains in Space. Birkhauser, Basel, 223-246. https://doi.org/10.1007/978-1-4612-1574-5 [10] Klartag, B. (2000) Remarks on Minkowski Symmetrizations. In: Milman, V.D. and Schechtman, G., Eds., Geometric Aspects of Functional Analysis, Lecture Notes in Mathematics, Vol. 1745, Springer, Berlin, Heidelberg, 109-117. https://doi.org/10.1007/BFb0107211