PM  >> Vol. 7 No. 5 (September 2017)

    凸体的Steiner对称化的两个定理
    Two Theorems of Steiner Symmetrization on Convex Bodies

  • 全文下载: PDF(384KB) HTML   XML   PP.368-372   DOI: 10.12677/PM.2017.75047  
  • 下载量: 149  浏览量: 220  

作者:  

孙丽英:陕西师范大学,数学与信息科学学院,陕西 西安

关键词:
凸体Steiner对称化Minkowski对称超平面Convex Body Steiner Symmetrization Minkowski Symmetrization Hyperplane

摘要:

本文研究Steiner对称化在凸体上的充分条件。首先,我们根据Steiner对称化的性质,例如:保体积、保凸性、单调性、表面积减小等,构造一个凸体的变换 。其次,我们依据 满足的条件及Steiner对称化的概念,证明出 为凸体上的Steiner对称化,并且得到两个类似的推论。本文最后构造出了Steiner对称化的两个充分条件。

In this paper, we mainly study sufficient conditions for Steiner symmetrization on convex bodies. Firstly, according to the properties of Steiner symmetrization, such as volume-preserving, convexity-preserving, monotonicity, surface area reduction and so on, we constructed a transformation on convex bodies. Secondly, in accordance to Steiner symmetrization’s characterization and concept, we proved that is Steiner symmetrization and came up with two homologous corollaries. Finally, we obtained two sufficient conditions for Steiner symmetrization.

文章引用:
孙丽英. 凸体的Steiner对称化的两个定理[J]. 理论数学, 2017, 7(5): 368-372. https://doi.org/10.12677/PM.2017.75047

参考文献

[1] Gruber, P. M. (2007) Convex and Discrete Geometry. Springer, Berlin, 168-179, 120-132.
[2] 刘越. Steiner对称化及平面上经Steiner对称化保持直径的凸集[D]: [硕士学位论文]. 广州: 中山大学, 2009.
[3] Klain, D.A. (2011) Steiner Symmetrization Using a Finite Set of Directions. Advances in Applied Mathematics, 48, 340-353.
https://doi.org/10.1016/j.aam.2011.09.004
[4] Coupier, D. and Davydov, Y. (2014) Random Symmetrizations of Convex Bodies. Advances in Applied Probability, 46, 603-621.
https://doi.org/10.1017/S000186780000728X
[5] Bourgain, J., Lindenstrauss, J. and Milman, V. (1989) Estimates Related to Steiner Symmetrizations. In: Lindenstrauss, J. and Milman, V.D., Eds., Geometric Aspects of Functional Analysis, Lecture Notes in Mathematics, Vol. 1376, Springer, Berlin, Heidelberg, 264-273.
https://doi.org/10.1007/BFb0090060
[6] Schneider, R. (1993) Convex Bodies: The Brunn-Minkowski Theory. Cambridge University Press, Cambridge.
https://doi.org/10.1007/BFb0090060
[7] Falconer, K.J. (1976) A Result on the Steiner Symmetrization of a Compact Set. Journal of the London Mathematical Society, S2-14, 385-386.
https://doi.org/10.1112/jlms/s2-14.3.385
[8] Bianchi, G., Gardner, R.J. and Gronchi, P. (2017) Symmetrization in Geometry. Advances in Mathematics, 306, 51-88.
https://doi.org/10.1016/j.aim.2016.10.003
[9] Krantz, S.G. and Parks, H.R. (1999) The Geometry of Domains in Space. Birkhauser, Basel, 223-246.
https://doi.org/10.1007/978-1-4612-1574-5
[10] Klartag, B. (2000) Remarks on Minkowski Symmetrizations. In: Milman, V.D. and Schechtman, G., Eds., Geometric Aspects of Functional Analysis, Lecture Notes in Mathematics, Vol. 1745, Springer, Berlin, Heidelberg, 109-117.
https://doi.org/10.1007/BFb0107211