注蒸汽燃气轮机循环热力性能优化研究
Optimization Research of the Thermal Performance of Steam Injection Gas Turbine System
DOI: 10.12677/SE.2017.74009, PDF, HTML, XML,  被引量 下载: 1,558  浏览: 3,342  国家自然科学基金支持
作者: 赵洪滨, 曹瑜:中国石油大学(北京)机械与储运工程学院,北京;过程流体过滤与分离技术北京市重点实验室,北京
关键词: STIGAspen plus注蒸汽比最佳状态点STIG Aspen Plus Steam Injection Ratio the Optimum State Point
摘要: 本文以注蒸汽燃气轮机系统(STIG)为研究对象,运用Aspen plus软件对该系统进行模拟,并对其进行了热力性能分析。着重讨论了压比、注蒸汽比以及透平进口温度对系统的热力性能的影响规律。通过计算分析,得出了注蒸汽轮机系统的最佳注蒸汽量和最佳压比,并与普通燃气轮机进行对比,证明了注蒸汽燃气轮机的优越性。另外,还得到了一个最佳的状态点,即透平进口温度为1300˚C,压比为34,注蒸汽比为0.2,该状态点对应的系统的比功率较大,发电效率最大,可达53.91%。在实际工业中,在进行注蒸汽燃气轮机的参数设计时,可以参考本文得出的最佳参数值。
Abstract: The steam injection gas turbine system (STIG) is studied in this paper. The system is simulated by using Aspen plus software, and its thermal performance is analyzed. The influence of pressure ratio, steam injection ratio and turbine inlet temperature on the thermal performance of the system is discussed. Through a series of calculation and analysis, the optimum steam injection rate and the optimum pressure ratio of the steam injection gas turbine system are obtained, and the superiority of steam injection gas turbine is proved by comparing with common gas turbine. In addition, we also get an optimum state point with the turbine inlet temperature of 1300˚C, the pressure ratio of 34, the steam injection ratio of 0.2. At this state point, the specific power is larger and the maximum generation efficiency can reach 53.91%. When steam injection gas turbine is designed to be applied to actual industry, the optimum parameter values obtained in this paper can be taken as a reference.
文章引用:赵洪滨, 曹瑜. 注蒸汽燃气轮机循环热力性能优化研究[J]. 可持续能源, 2017, 7(4): 78-88. https://doi.org/10.12677/SE.2017.74009

参考文献

[1] 左志涛, 孙志刚. 简单循环与回热循环燃气轮机变工况特性[J]. 航空动力学报, 2013, 28(2): 356-364.
[2] 胡自勤, 蔡睿贤. 燃气轮机热电并供系统变工况性能[J]. 工程热物理学报, 1990, 11(4): 357-360.
[3] 付忠广, 王霄楠, 卢可. 燃气预热温度对燃气-蒸汽联合循环性能影响[J]. 热力发电, 2016, 45(10): 16-22.
[4] 纪军, 张世铮. 注蒸汽燃气轮机稳态全工况性能分析[J]. 工程热物理学报, 1994, 13(4): 361-364.
[5] 周伏秋, 王克光. STIG循环余热锅炉回热限制分析[J]. 热能动力工程, 1994, 9(3): 146-150.
[6] 胡宗军, 吴铭岚. 注蒸汽燃气轮机最佳注汽量的研究[J]. 热能动力工程, 1998, 13(76): 257-261.
[7] 和彬彬, 段立强, 杨勇平. 回注蒸汽微型燃气轮机系统研究[J]. 中国电机工程学报, 2008, 28(14): 1-5.
[8] Carapellucci, R. and Milazzo, A. (2007) Repowering Combined Cycle Power Plants by a Modified STIG Configuration. Energy Conversion and Management, 48, 1590-1600.
https://doi.org/10.1016/j.enconman.2006.11.024
[9] Srinivas, T., Reddy, B.V. and Gupta, S. (2008) Sensitivity Analysis of STIG Based Combined Cycle with Dual Pressure HRSG. International Journal of Thermal Sciences, 47, 1226-1234.
https://doi.org/10.1016/j.ijthermalsci.2007.10.002
[10] De Paepe, M. and Dick, E. (2001) Technological and Economical Analysis of Water Recovery in Steam Injected Gas Turbines. Applied Thermal Engineering, 21, 135-156.
https://doi.org/10.1016/S1359-4311(00)00029-6
[11] Salvi, D. and Pierpaoli, P. (2002) Optimization of Inlet Air Cooling Systems for Steam Injected Gas Turbines. International Journal of Thermal Sciences, 41, 815-822.
https://doi.org/10.1016/S1290-0729(02)01376-5
[12] Shukla, A.K. and Singh, O. (2016) Performance Evaluation of Steam Injected gas Turbine Based Power Plant with Inlet Evaporative Cooling. Applied Thermal Engineering, 102, 454-464.
https://doi.org/10.1016/j.applthermaleng.2016.03.136
[13] Shukla, A.K. and Singh, O. (2017) Thermodynamic Investigation of Parameters Affecting the Execution of Steam Injected Cooled Gas Turbine Based Combined Cycle Power Plant with Vapor Absorption Inlet Air Cooling. Applied Thermal Engineering, 122, 380-388.
https://doi.org/10.1016/j.applthermaleng.2017.05.034
[14] Zhang, S. and Chi, J. (2015) Performance Analysis of a Partial Oxidation Steam Injected Gas Turbine Cycle. Applied Thermal Engineering, 91, 622-629.
https://doi.org/10.1016/j.applthermaleng.2015.08.062
[15] Kayadelen, H.K. and Ust, Y. (2017) Thermodynamic, Environmental and Economic Performance Optimization of Simple, Regenerative, STIG and RSTIG Gas Turbine Cycles. Energy, 121, 751-771.
https://doi.org/10.1016/j.energy.2017.01.060
[16] 林汝谋, 张世铮. 注蒸汽燃气轮机循环及特点分析[J]. 工程热物理学报, 1986, 7(3): 195-200.
[17] 蔡睿贤. 余热锅炉节点温差及其对联合循环性能的影响[J]. 工程热物理学报, 1983, 4(3): 223-226.
[18] 林勇虎, 焦树建. 余热锅炉最小温差和接近点温差的选择[J]. 燃气轮机技术, 1994(1): 28-34.
[19] 沈维道, 童钧耕. 工程热力学[M]. 北京: 高等教育出版社, 2007.