IJFD  >> Vol. 5 No. 3 (September 2017)

    充气硬盘磁头滑块飞行特性影响因素研究
    Research on the Influential Factors of Flying Characteristics of a Slider in a Filled-Gas Hard Disk Drive

  • 全文下载: PDF(917KB) HTML   XML   PP.91-101   DOI: 10.12677/IJFD.2017.53011  
  • 下载量: 448  浏览量: 882   国家自然科学基金支持

作者:  

杨廷毅,白雪,吕传毅,郭前建:山东理工大学机械工程学院,山东 淄博

关键词:
磁头/磁盘界面充气硬盘磁头滑块飞行特性修正Reynolds方程Head/Disk Interface Filled-Gas Hard Disk Drive Head Slider Flying Characteristic Modified Reynolds Equation

摘要:

为了减小磁盘高速旋转所承受的气体阻力、降低硬盘内部结构所承受的气流冲击和振动、以及提高硬盘存储密度和工作稳定性,人们正考虑向硬盘内部填充低密度气体。充气硬盘还具有存储容量大、节能、散热性能好等优点。硬盘工作过程中,磁头滑块飞行特性(承载力W、压力中心Xc和Yc)对硬盘工作稳定性有着重要影响。本文研究了充气气体物理特性、表面粗糙度、磁盘转速、飞行高度和俯仰角对硬盘磁头滑块飞行特性的影响,研究结果发现:磁盘转速的增加、飞行高度的降低、俯仰角的减小和氦气在氦气–空气混合气体中的比重(不同气体物理特性)下降,都会导致磁头滑块承载力的增加;磁盘转速的增加、飞行高度的增加、俯仰角的减小,都会导致压力中心Xc的减小;对于不同的磁盘转速、飞行高度、俯仰角、氦气在氦气–空气混合气体中的比重,压力中心Yc都几乎保持不变;粗糙度高度(σ)对承载力、压力中心Xc和Yc的影响,在不同粗糙度方向(γ)时,呈现出不同的影响规律。

In order to reduce the gas resistance of the high speed rotating disk and the impact and vibration of internal structure in a hard disk drive (HDD), and improve the storage density and working stability of a HDD, some kinds of gases with a low density are considered to fill inside a sealed HDD. The filled-gas HDD has some advantages of a large capacity, energy saving and heat dissipation performance. In an operating HDD, the flying characteristics of the slider, including the bearing capacity W, the pressure center Xc and Yc, have an important effect on the working stability of the HDD. In present paper, the effects of the gas physical properties filled inside the HDD, surface roughness, disk rotational speed, flying height and pitch angle, on flying characteristics of the slider, are studied. The results show that the W of the slider increases with the increase of the disk rotational speed, the decrease of the flying height, the decrease of the pitch angle and the decrease of proportion of helium gas in a mixed gas. The Xc decreases with the increase of the disk rotational speed, the increase of flying height, the decrease of the pitch angle. For different disk rotational speed, flying height, pitch angle, and proportion of helium gas in a mixed gas, the Yc keeps almost unchanged. For different direction of roughness (γ), the roughness height (σ) has different effect on W, Xc and Yc.

文章引用:
杨廷毅, 白雪, 吕传毅, 郭前建. 充气硬盘磁头滑块飞行特性影响因素研究[J]. 流体动力学, 2017, 5(3): 91-101. https://doi.org/10.12677/IJFD.2017.53011

参考文献

[1] Park, K.S. (2016) The Optimal Helium Fraction for Air-Helium Gas Mixture HDDs. Micro System Technologies, 22, 1307-1314.
https://doi.org/10.1007/s00542-015-2698-x
[2] White, J. (2014) The Gas Bearing Interface of Op-posed Recording Heads in a Disk Drive Utilizing Helium and Thin Titanium Foil Disks. Journal of Tribology, 36, Article ID: 041901.
https://doi.org/10.1115/1.4027899
[3] Bouchard, G. and Talke, F.E. (1986) Non-Repeatable Flutter of Magnetic Recording Disks. IEEE Transactions On Magnetics, 22, 1019-1021.
https://doi.org/10.1109/TMAG.1986.1064437
[4] Jacoby, J.E. and Gustafson, J.R. (2012) Sealed Laminated Electrical Connector for Helium Filled Disk Drive. United States Patent No. US 8194348 B2.
[5] Zhou, W.D., Liu, B., Yu, S.K., Hua, W. and Gonzaga, L. (2010) Effects of Gas Physical Properties on Flying Performance of Air Bearing Slider. IEEE Transactions on Magnetics, 46, 1389-1392.
https://doi.org/10.1109/TMAG.2009.2039854
[6] Liu, N., Zheng, J.L. and Bogy, D.B. (2009) Thermal Fly-ing-Height Control Sliders in Hard Disk Drives Filled with Air-Helium Gas Mixtures. Applied Physics Letters, 95, Arti-cle ID: 213505.
https://doi.org/10.1063/1.3268468
[7] Liu, N., Zheng, J.L. and Bogy, D.B. (2011) Thermal Fly-ing-Height Control Sliders in Air-Helium Gas Mixtures. IEEE Transactions on Magnetics, 47, 100-104.
https://doi.org/10.1109/TMAG.2010.2080313
[8] Aruga, K., Suwa, M., Shimizu, K. and Watanabe, T. (2007) A Study on Positioning Error Caused by Flow Induced Vibration Using Helium Filled Hard Disk Drives. IEEE Transactions on Magnetics, 43, 3750-3755.
https://doi.org/10.1109/TMAG.2007.902983
[9] Kil, S.W., Humphrey, J.A.C. and Haj-Hariri, H. (2012) Experi-mental Study of the Flow-Structure Interactions in an Air-Or Helium-Filled Hard Disk Drive Model. Micro System Technologies, 18, 43-56.
https://doi.org/10.1007/s00542-011-1374-z
[10] Kil, S.W., Humphrey, J.A.C. and Haj-Hariri, H. (2012) Numerical Study of the Flow-Structure Interactions in Air-or Helium-Filled Simulated Hard Disk Drives. Micro System Technolo-gies, 18, 57-75.
https://doi.org/10.1007/s00542-011-1375-y
[11] Kil, S.W., Humphrey, J.A.C. and Haj-Hariri, H. (2013) Turbu-lence Intensity Inversion Induced by the Mass-Reducing Hole in an Air or Helium Filled Hard Disk Drive. Micro System Technologies, 19, 31-42.
[12] 王玉娟, 陈云飞, 庄苹. 表面粗糙度对磁头磁盘系统静态特性的影响[J]. 机械工程学报, 2002, 38(1): 22-26.
[13] Ng, K.K., Seet, H.L., Hua, W., Yu, S.K., Ng, V. and Liu, B. (2012) Effect of Interfacial Roughness on Slider-Disk Interactions at Near-Contact Regime. IEEE Transactions on Magnetics, 48, 4459-4462.
https://doi.org/10.1109/TMAG.2012.2201926
[14] Yoon, S.J., Son, S.H. and Choi, D.H. (2008) Head Slider De-signs Considering Dynamic L/UL Systems for 1-in Disk Drives. IEEE Transactions on Magnetics, 44, 151-156.
https://doi.org/10.1109/TMAG.2007.911038
[15] 史宝军, 季家东, 杨廷毅. 表面粗糙度对硬盘超低飞高气膜静态特性的影响[J]. 机械工程学报, 2011, 47(11): 93- 99.
[16] 史宝军, 季家东, 杨廷毅. 粗糙度模式对硬盘气膜承载特性的影响[J]. 工程力学, 2012, 29(8): 313-318.
[17] 史宝军, 季家东, 杨廷毅, 于慧. 磁盘速度与容纳系数对硬盘气膜静态特性的影响[J]. 机械工程学报, 2012, 48(23): 95-101.
[18] Shi, B.J. and Yang, T.Y. (2010) Simpli-fied Model of Reynolds Equation with Linearized Flow Rate for Ultra-Thin Gas Film Lubrication in Hard Disk Drives. Micro System Technologies, 16, 1727-1734.
https://doi.org/10.1007/s00542-010-1107-8
[19] Shi, B.J., Yang, T.Y., Ge, P.Q. and Bai, X. (2012) Adaptive Grid Generation Technique of Sub-5nm Flying Height Air Bearing Slider with Clearance Discontinuities. Micro System Technologies, 18, 2017-2026.
https://doi.org/10.1007/s00542-012-1536-7
[20] Yang, T.Y., Shu, D.W., Shi, B.J. and Bai, X. (2016) Effects of Disk Surface Roughness on Static Flying Characteristics of Air Bearing Slider by Using a Combined Method of Reyn-olds Equation and Rough Disk Surface. Micro System Technologies, 22, 2295-2306.
https://doi.org/10.1007/s00542-015-2672-7