MP  >> Vol. 7 No. 5 (September 2017)

    分子机器中环状分子热传导性质的理论研究
    Theoretical Study on the Heat Conductivities of Cyclic Molecules in Molecular Machines

  • 全文下载: PDF(640KB) HTML   XML   PP.169-174   DOI: 10.12677/MP.2017.75019  
  • 下载量: 71  浏览量: 117  

作者:  

黄建平:湖南师范大学信息科学与工程学院,湖南 长沙;
唐 婧:湖南师范大学物理与信息科学学院,湖南 长沙

关键词:
分子机器环状分子热传导系数声子谱线宽度晶格动力学Molecular Machine Cyclic Molecule Heat Conductivity Linewidth of Phonon Lattice Dynamics

摘要:

运用晶格动力学理论推导了分子机器中环状分子振动的能量通量公式,在此基础上再应用格林-久保公式推导了环状分子的热传导系数公式。由于环状分子的热传导系数与声子的谱线宽度有关,因此还推导了其声子谱线宽度公式。数值计算结果表明,环状分子的热传导系数随着环状分子长度的增加而增加,并且在环状分子无限增长时趋于无限,因此任何长度的环状分子其热传导性质都存在尺寸效应。数值计算结果还表明,长环状分子的热传导系数主要来自于短波矢声子的贡献。

The formulas for energy flux of atomic vibrations and linewidths of phonons of cyclic molecules in molecular machines were derived based on the lattice dynamics, and then based on those formulas and Green-Kubo formula, the formula for heat conductivities of cyclic molecules was derived. Finally the numerical calculations were carried out. The numerical results show that the heat conductivity of a short cyclic molecule increases when its length increases and will tend to infinity when its length tends to infinity, so there is size effect of the heat conductivity in a cyclic molecule with any length. The numerical results also show that the main contributions to the heat conductivity of a long cyclic molecule are made by phonons with short wave vectors.

文章引用:
黄建平, 唐婧. 分子机器中环状分子热传导性质的理论研究[J]. 现代物理, 2017, 7(5): 169-174. https://doi.org/10.12677/MP.2017.75019

参考文献

[1] Carina, R.F., Dietrich-Buchecker, C. and Sauvage J.P. (2016) Molecular Composite Knots. Journal of the American Chemical Society, 118, 9110-9116.
https://doi.org/10.1021/ja961459p
[2] Badjic, J.D., Ronconi, C.M., Stoddart, J.F., et al. (2015) Operating Molecular Elevators. Journal of the American Chemical Society, 128, 1489-1499.
https://doi.org/10.1021/ja0543954
[3] Ruangsupapichat, N., Pollard, M.M., Harutyunyan, S.R., et al. (2011) Reversing the Direction in a Light-Driven Rotary Molecular Motor. Nature Chemistry, 3, 53-60.
https://doi.org/10.1038/nchem.872
[4] Wu, G. and Dong, J. (2005) Anomalous Heat Conduction in a Carbon Nanowire: Molecular Dynamics Calculations. Physical Review B, 71, Article ID: 115410.
https://doi.org/10.1103/PhysRevB.71.115410
[5] 李圣怡, 黄建平. 基于晶格动力学的纳米薄膜热特性研究[J]. 微纳电子技术, 2008, 45(5): 249-254.
[6] Bottger, H. (1983) Principles of the Theory of Lattice Dynamics. Physik-Verlag, Weinheim, 85-90.
[7] Frizzera, W., Viliani, G., Montagna, M., et al. (1997) One-Dimensional Dynamics of Lattice Heat Transport. Journal of Physics: Condensed Matter, 9, 10867-10879.
https://doi.org/10.1088/0953-8984/9/49/007
[8] Wang, J. and Li, B. (2004) Mode-Coupling Theory and Molecular Dynamics Simulation for Heat Conduction in a Chain with Transverse Motions. Physical Review E, 70, Article ID: 021204.
https://doi.org/10.1103/PhysRevE.70.021204
[9] Wilson, R.S. and Kim, S.K. (1962) Theory of Heat Conductivity of Anharmonic Crystals. Physical Review, 128, 4674-4677.
[10] Semwal, B.S. and Sharma, P.K. (1972) Heat Conductivity of an Anharmonic Crystal. Physical Review B, 5, 3909-3913.
[11] Maradudin, A.A. and Fein, A.E. (1973) Scattering of Neutrons by an Anharmonic Crystal. Physical Review B, 7, 2589-2608.
[12] Hyzorek, K. and Tretiakov, K.V. (2016) Thermal Conductivity of Liquid Argon in Nanochannels from Molecular Dynamics Simulations. The Journal of Chemical Physics, 144, Article ID: 194507.
https://doi.org/10.1063/1.4949270