JWRR  >> Vol. 6 No. 5 (October 2017)

    长江口潮汐水流运动新认识
    Recognition of Tide and Tidal Current Movement in the Yangtze Estuary

  • 全文下载: PDF(1349KB) HTML   XML   PP.475-485   DOI: 10.12677/JWRR.2017.65056  
  • 下载量: 121  浏览量: 167  

作者:  

余文畴:长江科学院,湖北 武汉;
张志林:长江口水文水资源勘测局,上海

关键词:
长江口潮位潮差比降潮流速周期性变化Yangtze River Estuary Tide Tidal Range Slope Tidal Current Cyclic Variation

摘要:

通过对潮位、比降、流速周期性变化内在关系的分析,揭示了长江口河段潮位、潮差、比降变化与径流之间的宏观关系。研究结论认为:长江口平均潮位向海沿程降低,比降沿程减小,年平均潮差逐渐增大,至牛皮礁站附近达到最大,体现了径流与潮汐动力强弱变化的过程。通过对潮差的研究,发现长江口潮差变化的分区界限,其上下遵循不同的规律,而且这个界限随径流的增大而下移,小水年在白茆~杨林之间,大水年在石洞口~高桥之间。通过对比降以及比降和潮流速周期之间的关系研究,揭示了由于径流的惯性作用,使得潮流的变化滞后于比降的变化。这些研究结论在河道治理及航道整治中,对长江口不同的区段采取不同的治理方案具有指导意义。

Based on the analysis of the relationship between the tide level, the specific gradient and the periodic variation of the flow velocity, the study concluded that: The average tide of the Yangtze River estuary is decreasing along the path; the slope is decreasing along the way; the average tidal range increases gradually, to reach the maximum station near the cowhide reef, which reflects the process of runoff and tidal power change. Through the study of the Yangtze River Estuary tidal range, it found that the Yangtze River Estuary tide follows different rules and variable partition boundaries, and the limit decreases with increasing runoff. The boundaries located between Baimao and Yanglin stations in flood years, and located between Shidongkou and Gaoqiao stations in dry years. Through comparative research on the relationship between the slope and tidal velocity cycle, which reveals the change of trend lags behind the change of slope due to the inertia the runoff. These conclusions are of guiding significance for different channel sections of the Yangtze River in the channel regulation and channel regulation.

文章引用:
余文畴, 张志林. 长江口潮汐水流运动新认识[J]. 水资源研究, 2017, 6(5): 475-485. https://doi.org/10.12677/JWRR.2017.65056

参考文献

[1] 沈焕庭, 谷国传, 李九发, 等. 长江河口动力过程和地貌演变[M]. 上海: 上海科学技术出版社, 1988: 73-79. SHEN Huanting, GU Guochuan, LI Jiufa, et al. The Yangtze River Estuary dynamic process and geomorphic evolution. Shanghai: Shanghai Scientific Technology Press, 1988: 73-79. (in Chinese)
[2] 沈焕庭, 潘定安. 长江河口潮流特性及其对河槽演变的影响[J]. 华东师范大学学报(自然科学版), 1979(1): 131-144. SHEN Huanting, PAN Dingan. The characteristics of tidal current and its effects on the channel changes of the Yangtze Estuary. Journal of East China Normal University (Natural Science), 1979(1): 131-144. (in Chinese)
[3] 谷国传, 胡方西, 等. 长江河口动力过程和地貌演变[M]. 上海: 上海科学技术出版社, 1988: 198-204. GU Guochuan, HU Fangxi, et al. The Yangtze River Estuary dynamic process and geomorphic evolution. Shanghai: Shanghai Scientific Technology Press, 1988: 198-204. (in Chinese)
[4] 杨正东, 朱建荣, 王彪, 等. 长江河口潮位站潮汐特征分析[J]. 华东师范大学学报(自然科学版), 2012, 3(5): 111-119. YANG Zhengdong, ZHU Jianrong, WANG Biao, et al. Analysis of tidal characteristics of the tidal gauges in the Yangtze Estuary. Journal of East China Normal University (Natural Science Edition), 2012, 3(5): 111-119. (in Chinese)
[5] 刘新城, 沈焕庭, 杨清书. 长江河口段潮差变化研究[J]. 华东师范大学学报(自然科学版). 1999, 6(2): 89-94. LIU Xincheng, SHEN Huanting and YANG Qing. Analysis of tidal range in the Yangtze estuary tidal range. Journal of East China Normal University (Natural Science). 1999, 6(2): 89-94. (in Chinese)
[6] CAI, H. Y., SAVENIJE, H. H. G., JIANG, C. J., ZHAO, L. L. and YANG, Q. S. Analytical approach for determining the mean water level profile in an estuary with substantial fresh water discharge. Hydrology and Earth System Sciences, 2016(20): 1177-1195.
[7] 陈沈良, 谷国传, 刘勇胜. 长江口北支涌潮的形成条件及初生地探讨[J]. 水利学报, 2003, 11(11): 30-36. CHEN Shenliang, GU Guochuan and LIU Yongsheng. Formation conditions and initial site of tidal bore in the north branch of Yangtze River estuary. Journal of Hydraulic Engineering, 2003, 11(11): 30-36. (in Chinese)
[8] 方国洪. 潮汐和潮流的分析和预报[M]. 北京: 海洋出版社, 1986. FANG Guohong. Analysis and prediction of tides and currents. Beijing: Ocean Press, 1986. (in Chinese)