APP  >> Vol. 7 No. 8 (August 2017)

    基于光子数测量的量子信道物理安全检测
    Quantum Channel Physical Security Detection Based on Photon Number Measurement

  • 全文下载: PDF(2228KB) HTML   XML   PP.235-246   DOI: 10.12677/APP.2017.78030  
  • 下载量: 693  浏览量: 1,719  

作者:  

彭 建:华北电力大学数理学院,北京

关键词:
量子密钥分配单光子探测器密钥安全性密钥码率Quantum Key Distribution Single Photon Detector Key Security Key Bit Rate

摘要:

理想的单光子源和高性能的单光子探测器是制约量子密钥分配系统中的密钥安全和码率的两个关键因素。弱相干脉冲作为单光子源,为保证安全性,平均光子数必须少而限制了码率的提高。本文介绍了超导边沿传感器单光子探测器,提出了多端口分束器与多APD结合可用于量子密钥分配系统中检测弱相干脉冲中的光子数。对窃听者的攻击策略进行分析的基础上,基于光子数的检测,指出在保证安全性的前提条件下可以提高弱相干脉冲中的平均光子数,进而提高系统的量子密钥成码率。

The ideal single photon source and high performance single photon detectors are two key factors that restrict the key security and bit rate in quantum key distribution system. As a single photon source, the weak coherent pulse must contain fewer average photon number for the sake of security, thus the quantum bit rate cannot be raised to a high level. Superconducting transition edge sensor for single photon detection has been introduced. It is proposed that multi-port beam splitter combined with many APDs can be used to detect the photon number in weak coherent pulse in quantum key distribution system. The attack tactics of eavesdropper is analyzed, and based on photon number detection, it is proposed that the average photon number in weak coherent pulse can be improved, thus the quantum key bit rate can be improved.

文章引用:
彭建. 基于光子数测量的量子信道物理安全检测[J]. 应用物理, 2017, 7(8): 235-246. https://doi.org/10.12677/APP.2017.78030

参考文献

[1] Hwang, W.Y. (2003) Quantum Key Distribution with High Loss: Toward Global Secure Communication. Physical Review Letters, 91, 057901.
https://doi.org/10.1103/PhysRevLett.91.057901
[2] Gottesman, D., Lo, H.K., Lutkenhaus, N. and Preskill, J. (2004) Security of Quantum Key Distribution with Imperfect Devices. Quantum Information & Computation, 4, 325-360.
https://doi.org/10.1109/ISIT.2004.1365172
[3] Wang, X.-B. (2005) Beating the Photon-Number-Splitting Attack in Practical Quantum Cryptography. Physical Review Letters, 94, 230503.
https://doi.org/10.1103/PhysRevLett.94.230503
[4] Lo, H.-K., Ma, X. and Chen, K. (2005) Decoy State Quantum Key Distribution. Physical Review Letters, 94, 230504.
https://doi.org/10.1103/PhysRevLett.94.230504
[5] Lo, H.-K. and Chau, H.F. (1999) Unconditional Security of Quantum Key-Distribution over Arbitrarily Long Distances. Science, 283, 2050-2056.
https://doi.org/10.1126/science.283.5410.2050
[6] Lydersen, L., Wiechers, C., Wittmann, C., Elser, D., Skaar, J. and Makarov, V. (2010) Hacking Commercial Quantum Cryptography Systems by Tailored Bright Illumination. Nature Photonics, 4, 686-689.
https://doi.org/10.1038/nphoton.2010.214
[7] Xu, F., Qi, B. and Lo, H.-K. (2010) Experimental Demonstration of Phase-Remapping Attack in a Practical Quantum Key Distribution System. New Journal of Physics, 12, 113026.
https://doi.org/10.1088/1367-2630/12/11/113026
[8] Lo, H.-K., Curty, M. and Qi, B. (2012) Measure-ment-Device-Independent Quantum Key Distribution. Physical Review Letters, 108, 130503.
https://doi.org/10.1103/PhysRevLett.108.130503
[9] Ma, X. and Razavi, M. (2012) Alternative Schemes for Measure-ment-Device-Independent Quantum Key Distribution. Physical Review A, 86, 062319.
https://doi.org/10.1103/PhysRevA.86.062319
[10] Peng, C.-Z., Zhang, J., Yang, D., Gao, W.-B., Ma, H.-X., Yin, H., Zeng, H.-P., Yang, T., Wang, X.-B. and Pan, J.-W. (2007) Experimental Long-Distance Decoy-State Quantum Key Distribution Based on Polarization Encoding. Physical Review Letters, 98, 010505.
https://doi.org/10.1103/PhysRevLett.98.010505
[11] Rosenberg, D., Harrington, J.W., Rice, P.R., Hiskett, P.A., Peterson, C.G., Hughes, R.J., Lita, A.E., Nam, S.W. and Nordholt, J.E. (2007) Long-Distance Decoy-State Quantum Key Distribution in Optical Fiber. Physical Review Letters, 98, Article ID: 010503.
https://doi.org/10.1103/PhysRevLett.98.010503
[12] Liu, Y., Chen, T.-Y., Wang, J., Cai, W.-Q., Wan, X., Chen, L.-K., Wang, J.-H., Liu, S.B., Liang, H. and Yang, L. (2010) Decoy-State Quantum Key Distribution with Polarized Photons over 200 km. Optics Express, 18, 8587-8594.
https://doi.org/10.1364/OE.18.008587
[13] Liu, Y., Chen, T.-Y., Wang, L.-J., Liang, H., Shentu, G.-L., Wang, J., Cui, K., Yin, H.-L., Liu, N.-L. and Li, L. (2013) Experimental Measurement-Device-Independent Quantum Key Distribution. Physical Review Letters, 111, Article ID: 130502.
https://doi.org/10.1103/PhysRevLett.111.130502
[14] Fukuda, D., Damayanthi, R.M.T., Yoshizawa, A., Zen, N., Takahashi, H., Amemiya, K. and Ohkubo, M. (2007) Titanium Based Transition Edge Microcalorimeters for Optical Photon Measurements. IEEE Transactions on Applied Superconductivity, 17, 259-262.
https://doi.org/10.1109/TASC.2007.897393
[15] Martinis, J.M., Hilton, G.C., Irwin, K.D. and Wollman, D.A. (2000) Calculation of TC in a Normal-Superconductor Bilayer Using the Microscopic-Based Usadel Theory. Nuclear Instruments and Methods in Physics Research Section A, 444, 23.
[16] Zhang, Q.-Y., Dong, W.-H., He, G.-F., Li, T.-F., Liu, J.-S. and Chen, W. (2014) Review on Superconducting Transition Edge Sensor Based Single Photon Detector. Acta Physica Sinica, 63, Article ID: 200303.
[17] Miller, A.J., Nam, S.W., Martinis, J.M., et al. (2003) Demonstration of a Low-Noise Near-Infrared Photon Counter with Multiphoton Discrimination. Applied Physics Letters, 83, 791-793.
https://doi.org/10.1063/1.1596723
[18] Zhang, Q., Liu, J., Dong, W., Wang, T., He, G., Li, T., Zhou, X. and Chen, W. (2014) Design and Fabrication of Superconducting Transition Edge Sensor Bolometers with Background Limited Noise Performance. Chinese Science Bulletin, 59, 2292.
https://doi.org/10.1007/s11434-014-0338-y
[19] Ribordy, G., Gisin, N., Guinnard, O., et al. (2004) Photon Counting at Telecom Wavelengths with Commercial InGaAs/InP Avalanche Photodiodes: Current Performance. Journal of Modern Optics, 51, 1381-1398.
[20] Lacaita, A., Zappa, F., Cova, S., et al. (1996) Single-Photon Detection beyond 1 m: Performance of Commercially Available InGaAs/InP Detectors. Applied Optics, 35, 2986-2996.
https://doi.org/10.1364/AO.35.002986
[21] Prochazka, I., Hamal, K. and Spoko, B. (2004) Recent Achievements in Single Photon Detectors and Their Applications. Journal of Modern Optics, 51, 1289-1313.
https://doi.org/10.1080/09500340408235273
[22] Dovrat, L., Bakstein, M., Istrati, D., et al. (2012) Simulations of Photon Detection in Silicon Photomultiplier Number-Resolving Detectors. Physica Scripta, T147, Article ID: 014010.
https://doi.org/10.1088/0031-8949/2012/T147/014010
[23] Worsely, A.P., Coldenstrodt-Ronge, H.B., Lun deen, J.S., et al. (2009) Absolute Efficiency Estimation of Photon-Number-Resolving Detector Using Twin Beams. Optics Express, 17, 4397-4411.
https://doi.org/10.1364/OE.17.004397
[24] Pearlman, A.J., Ling, A., Goldschmidt, E.A., et al. (2010) Enhancing Image Constrast Using Coherent States and Photon Number Resolving Detectors. Optics Express, 18, 6033-6039.
https://doi.org/10.1364/OE.18.006033
[25] He, B., Wang, J., Yu, B., Liu, Y., Wang, X., Xiao, L. and Jia, S. (2013) Measurement of Multi-Photon Response Time by Using a Single Photon Detector. Journal of Optoelectronics Laser, 24, 758-762.
[26] Achilles, D., Silberhorn, C., Liwa, C., et al. (2003) Fiber-Assisted Detection with Photon Number Resolution. Optics Letters, 28, 2387-2389.
https://doi.org/10.1364/OL.28.002387
[27] Jiang, L.A., Dauler, E.A. and Chang, J.T. (2007) Photon-Number-Resolving Detector with 10 Bits of Resolution. Physical Review A, 75, Article ID: 062325.
https://doi.org/10.1103/PhysRevA.75.062325
[28] Laiho, K., Avenhaus, M., Cassemiro, K.N., et al. (2009) Direct Probing of the Wigner Function by Time-Multiplexed Detection of Photon Statistics. New Journal of Physics, 11, Article ID: 043012.
[29] Jian, P., Fu, Y., Yao, L., Shang, X., Lu, Z., Yang, B. and Yu, L. (2008) Quick Single-Photon Detector with Many Avalanche Photo Diodes Working on the Time Division. Chinese Optics Letters, 6, Article ID: 050320.
https://doi.org/10.3788/COL20080605.0320
[30] Zheng, L.-X., Wu, J., Zhang, X.-C., Tu, J.-H., Sun, W.-F. and Gao, X.-J. (2014) Sensing Detection and Quenching Method for InGaAs Single-Photon Detector. Acta Physica Sinica, 63, Article ID: 104216.