WPT  >> Vol. 5 No. 4 (October 2017)

    铁粉去除电镀废水中锌镉离子的反应动力学研究
    Study on Reaction Kinetics of Treatment Zinc Cadmium Ions in Electroplating Wastewater by Iron

  • 全文下载: PDF(772KB) HTML   XML   PP.65-77   DOI: 10.12677/WPT.2017.54009  
  • 下载量: 658  浏览量: 1,960   国家自然科学基金支持

作者:  

苏晓渊:景德镇市环境监测站,江西 景德镇;
成 岳,余宏伟,李 聪:景德镇陶瓷大学材料科学与工程学院,江西 景德镇

关键词:
铁粉正交试验锌镉离子去除率反应动力学Iron Powder Orthogonal Test Zinc and Cadmium Ion Removal Rate Reaction Kinetics

摘要:

以商业级还原性铁粉为原材料对某公司的含锌镉电镀废水进行了正交试验研究。结果表明:影响锌、镉离子去除率的主要因素为pH和铁的投加量,次要影响因素为反应时间和反应物初始浓度。去除镉的最佳组合条件是pH为5,浓度为20 mg/L,铁的投加量为50 mg/L,反应时间达到1.5 h以上时,镉的去除率达到98.2%;去除锌的最佳组合条件是pH为9,浓度为20 mg/L,铁的投加量为75 mg/L,反应时间达到0.5 h以上时,锌的去除率达到95.4%。反应动力学研究表明:还原性铁粉去除锌、镉体系均符合准一级反应动力学。反应速率随着锌初始浓度、pH值和投加量的增加而升高,随着镉初始浓度和pH值的升高而降低,随着还原性铁粉投加量的增加而升高。

Commercial-grade iron powder as a raw material for reducing electroplating wastewater was studied. The orthogonal test showed: the main factors of zinc of cadmium ions’ removal rate are pH and dosage of iron, and the secondary factors are reaction time and initial concentration. Cadmium is the best combination of pH 5 at a concentration of 20 mg/L, the dosage of iron is 50 mg/L, the reaction time to reach more than 1.5 h, cadmium’s removal rate reaches 98.2% under these conditions. Zinc is the best combination of pH 9 at a concentration of 20 mg/L, the dosage of iron is 75 mg/L, the reaction time to reach more than 0.5 h, zinc’s removal rate reaches 95.4%. Reaction kinetics tests showed that the removal of Zn and Cd from the reduced iron powder was consistent with the pseudo first order reaction kinetics. The reaction rate increases with the increase of initial zinc concentration, pH value and dosage, and decreases with the increase of initial cadmium concentration and pH value, and increases with the increase of the amount of reduced iron powder.

文章引用:
苏晓渊, 成岳, 余宏伟, 李聪. 铁粉去除电镀废水中锌镉离子的反应动力学研究[J]. 水污染及处理, 2017, 5(4): 65-77. https://doi.org/10.12677/WPT.2017.54009

参考文献

[1] 贺俊, 刘亮亮, 唐述毅, 等. 环境污染、财政分权与中国经济增长[J]. 东北大学学报(社会科学版), 2016, 18(1): 23-28.
[2] 朱坤娥, 王海北, 李艳荣, 等. 铅锌冶炼重金属废水处理技术研究进展[J]. 中国资源综合利用, 2015, (4): 31-33.
[3] 徐正香, 刘岩, 方圣琼, 等. 零价铁法在废水处理中的机理及应用[J]. 环境与发展, 2014, 26(4): 33-37.
[4] Sun, Z.M., Zheng, S.L., Godwin, A.A., et al. (2013) Degradation of Simazine from Aqueous Solutions by Diatomite-Supported Nanosized Zero-Valent Iron Composite Materials. Journal of Hazardous Materials, 263, 768-777.
https://doi.org/10.1016/j.jhazmat.2013.10.045
[5] Busch, J., Meißner, T., Potthoff, A., et al. (2015) A Field In-vestigation on Transport of Carbon-Supported Nanoscale Zero-Valent Iron (nZVI) in Groundwater. Journal of Con-taminant Hydrology, 181, 59-68.
https://doi.org/10.1016/j.jconhyd.2015.03.009
[6] Kahdasli, I., Arslan, T., Olmez-Hanci, T., et al. (2009) Com-plexing Agent and Heavy Metal Removals from Metal Plating Effluent by Electrocoagulation with Stainless Steel Electrodes. Journal of Hazardous Materials, 165, 838-845.
https://doi.org/10.1016/j.jhazmat.2008.10.065
[7] Heidmann, I. and Calmano, W. (2008) Removal of Zn(II), Cu(1I), Ni(Ⅱ), Ag(I) and Cr(VI) Present in Aqueous Solutions by Aluminium Electrocoagulation. Journal of Hazard-ous Materials, 152, 934-941.
https://doi.org/10.1016/j.jhazmat.2007.07.068
[8] Jadhav, S.U., Kalme, S.D. and Govindwar, S.P. (2008) Bio-degradation of Methyl Red by Galactomyces Geotrichum MTCC 1360. International Biodeterioration Biodegradation, 62, 135-142.
https://doi.org/10.1016/j.ibiod.2007.12.010
[9] Brijesh, S.K. and Rajeev, C.C. (2013) nZVI Based Nanocomposites: Role of Noble Metal and Clay Support on Chemisorptive Removal of Cr(VI). Journal of Environ-mental Chemical Engineering, 3, 320-327.
[10] Diao, Z.H., Xu, X.R., Chen, H., et al. (2016) Simultaneous Removal of Cr(VI) and Phenol by Persulfate Activated with Bentonite-Supported Nanoscale Zero-Valent Iron: Reactivity and Mechanism. Journal of Hazardous Materials, 316, 186-193.
https://doi.org/10.1016/j.jhazmat.2016.05.041
[11] Ho, Y.S. and McKay, G. (1999) Pseudo-Second Order Model for Sorption Processes. Process Biochemistry, 34, 451-465.
https://doi.org/10.1016/S0032-9592(98)00112-5
[12] Huang, P.P., Ye, Z.F., Xie, W.M., et al. (2013) Rapid Magnetic Removal of Aqueous Heavy Metals and Their Relevant Mechanisms Using Nanoscale Zero Valent Iron nZVI Particles. Water Research: A Journal of the International Water Association, 47, 4050-4058.
https://doi.org/10.1016/j.watres.2013.01.054
[13] 熊慧欣, 周立祥. 不同晶型羟基氧化铁(FeOOH)的形成及其在吸附去除Cr(Ⅵ)上的作用[J]. 岩石矿物学杂志, 2008, 27(6): 559-566.