石墨烯铝基复合材料的界面反应研究
Study on Interface Reaction of Aluminum-Matrix Composite Reinforced by Graphene
DOI: 10.12677/NAT.2017.73008, PDF, HTML, XML,  被引量 下载: 1,990  浏览: 3,998 
作者: 陈长科, 马 冰:新疆众和股份有限公司,新疆 乌鲁木齐;张海平, 李炯利, 王旭东:北京航空材料研究院,北京
关键词: 铝基复合材料石墨烯界面反应机理研究Aluminum-Matrix Composite Graphene Interface Reaction Mechanism Analysis
摘要: 石墨烯具有极其优异的力学性能,是理想的复合材料增强体。本文以商业纯铝为基体,石墨烯为增强相,通过超声混合法制备石墨烯-Al复合粉末,通过真空热压烧结制备石墨烯-Al复合材料,通过扫描电镜(SEM)、差热分析(DSC)、X-射线衍射分析(XRD)、显微硬度计表征了材料的宏观形貌、微观形貌、反应温度、相组成和显微硬度等。结果表明:石墨烯和Al在400℃时便开始发生反应,但在600℃以下时,两者反应速度较慢,在Al熔点以上时,石墨烯和Al反应速度明显增加,石墨烯和Al反应生成Al4C3;少量的Al4C3可以增强石墨烯和Al基体的结合力,有利于提高材料的力学性能,但是大量脆性Al4C3生成时,材料的力学性能下降。
Abstract: Graphene has excellent mechanical properties and is considered as an excellent strengthening material in composite. In this paper, ultrasonic mixing was used to obtain uniformly dispersed graphene into Al powder and hot pressing was used to fabricate Graphene-Al composite bulk. The samples were characterized by scanning electron microscopy (SEM), differential thermal analysis (DSC), X-ray diffraction (XRD); the mechanical properties were tested by microhardness test. The results showed that the graphene could react with Al at 400˚C and form Al4C3 phase, and the reacting rates were relative low under 600˚C, the reacting rates increased significantly above the melting point of aluminum. Slight formation of Al4C3 could increase the mechanical property of composites, but massive Al4C3 would greatly decrease the mechanical property of composites.
文章引用:陈长科, 张海平, 马冰, 李炯利, 王旭东. 石墨烯铝基复合材料的界面反应研究[J]. 纳米技术, 2017, 7(3): 66-73. https://doi.org/10.12677/NAT.2017.73008

参考文献

[1] 刘兵, 彭超群, 王日初, 王小锋, 李婷婷. 大飞机用铝合金的研究现状及展望[J]. 中国有色金属学报, 2010, 20(9): 1705-1715.
[2] 王洪, 付高峰, 孙继红, 李兴杰, 姜澜. 超高强铝合金研究进展[J]. 材料导报, 2006, 20(2): 58-60.
[3] Geim, A.K. and Novoselov, K.S. (2007) The Rise of Graphene. Nature Materials, 6, 183-191.
https://doi.org/10.1038/nmat1849
[4] Lee, C., Wei, X., Kysar, J.W. and Hone, J. (2008) Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science, 321, 385.
https://doi.org/10.1126/science.1157996
[5] 郭鹏. 石墨烯的制备, 组装及应用研究[D]: [博士学位论文]. 北京: 北京化工大学, 2010.
[6] Stankovich, S., Dikin, D., Dommett, G., Kohlhaas, K., Zimney, E., Stach, E. and Ruoff, R. (2006) Graphene-Based Composite Materials. Nature, 442, 282-286.
https://doi.org/10.1038/nature04969
[7] Huang, X., Qi, X., Boey, F. and Zhang, H. (2012) Graphene-Based Composites. Chemical Society Reviews, 41, 666- 686.
https://doi.org/10.1039/C1CS15078B
[8] Rafiee, M., Rafiee, J., Wang, Z., Song, H., Yu, Z.Z. and Koratkar, N. (2009) Enhanced Mechanical Properties of Nanocomposites at Low Graphene Content. Acs Nano, 3, 3884-3890.
[9] Kim, W.J., Lee, T.J. and Han, S.H. (2014) Multi-Layer Graphene/Copper Composites: Preparation Using High-Ratio Differential Speed Rolling, Microstructure and Mechanical Properties. Carbon, 69, 55-65.
https://doi.org/10.1016/j.carbon.2013.11.058
[10] Zhou, C., Huang, W., Chen, Z., Ji, G., Wang, M.L., Chen, D., et al. (2015) In-Plane Thermal Enhancement Behaviors of Al Matrix Composites with Oriented Graphite Flake Alignment. Composites Part B Engineering, 70, 256-262.
https://doi.org/10.1016/j.compositesb.2014.11.018
[11] Rashad, M., Pan, F., Tang, A., Asif, M., Hussain, S., Gou, J., et al. (2015) Improved Strength and Ductility of Magnesium with Addition of Aluminum and Graphene Nanoplatelets (Al+GNPs) Using Semi Powder Metallurgy Method. Journal of Industrial & Engineering Chemistry, 23, 243-250.
https://doi.org/10.1016/j.jiec.2014.08.024
[12] Li, J.L., Xiong, Y.C., Wang, X.D., Yan, S.J., Yang, C., He, W.W. and Dai, S.L. (2015) Microstructure and Tensile Properties of Bulk Nanostructured Aluminum/Graphene Composites Prepared via Cryomilling. Materials Science and Engineering: A, 626, 400-405.
https://doi.org/10.1016/j.msea.2014.12.102
[13] 张丹丹, 战再吉. 石墨烯/金属复合材料力学性能的研究进展[J]. 材料工程, 2016, 44(5): 112-119.
[14] Jiang, L., Li, Z., Fan, G., Cao, L. and Zhang, D. (2012) The Use of Flake Powder Metallurgy to Produce Carbon Nanotube (CNT)/Aluminum Composites with a Homogenous CNT Distribution. Carbon, 50, 1993-1998.
https://doi.org/10.1016/j.carbon.2011.12.057
[15] Li, Z., Fan, G., Tan, Z., Guo, Q., Xiong, D., Su, Y., et al. (2014) Uniform Dispersion of Graphene Oxide in Aluminum Powder by Direct Electrostatic Adsorption for Fabrication of Graphene/Aluminum Composites. Nanotechnology, 25, 325601.
https://doi.org/10.1088/0957-4484/25/32/325601
[16] 独涛, 张洪迪, 范同祥. 石墨烯/金属复合材料的研究进展[J]. 材料导报, 2015, 29(3): 121-129.
[17] Pérez-Bustamante, R., Bolaños-Morales, D., Bonilla-Martínez, J., Estrada-Guel, I. and Martínez-Sánchez, R. (2014) Microstructural and Hardness Behavior of Gra-phene-Nanoplatelets/Aluminum Composites Synthesized by Mechanical Alloying. Journal of Alloys & Compounds, 615, S578-S582.
https://doi.org/10.1016/j.jallcom.2014.01.225
[18] Adamska, L., Lin, Y., Ross, A.J., Batzill, M. and Oleynik, I.I. (2012) Atomic and Electronic Structure of Simple Metal/Graphene and Complex Metal/Graphene/Metal Interfaces. Physical Review B Condensed Matter, 85, 2202-2208.
https://doi.org/10.1103/PhysRevB.85.195443
[19] Khomyakov, P.A., Giovannetti, G., Rusu, P.C., Brocks, G., Den Brink, J.V. and Kelly, P.J. (2009) First-Principles Study of the Interaction and Charge Transfer between Graphene and Metals. Physical Review B, 79, Article ID: 195425.
https://doi.org/10.1103/PhysRevB.79.195425
[20] Qian, W., Hao, R., Hou, Y., Tian, Y., Shen, C., Gao, H., et al. (2009) Solvothermal-Assisted Exfoliation Process to Produce Graphene with High Yield and High Quality. Nano Research, 2, 706-712.
https://doi.org/10.1007/s12274-009-9074-z
[21] Ci, L., Ryu, Z., Jin-Phillipp, N.Y. and Rühle, M. (2006) Investigation of the Interfacial Reaction between Multi-Walled Carbon Nanotubes and Aluminum. Acta Materialia, 54, 5367-5375.
https://doi.org/10.1016/j.actamat.2006.06.031
[22] 王振卿, 刘相法, 边秀房, 张均燕. Al-C反应的DSC和XRD分析[J]. 铸造, 2003, 52(7): 480-483.