稻壳生物炭对稀土元素Ce、Y吸附效果的研究
The Adsorption Study of Rare Earth Element Ce, Y in the Solution on Rice Husk Biochar
DOI: 10.12677/HJCET.2017.75028, PDF, HTML, XML, 下载: 1,615  浏览: 4,444 
作者: 唐 璐, 刘 丹, 程祖琴, 刘 鑫:江西理工大学资源与环境工程学院,江西 赣州;周 丹:江西理工大学资源与环境工程学院,江西 赣州;江西省矿冶环境污染控制重点实验室,江西 赣州
关键词: 稻壳生物炭稀土元素吸附Rice Husk Biochar Rare Earth Element Adsorption
摘要: 以稻壳为原料,在550˚C,氮气气氛下热解制备生物炭(RHBC),通过吸附热力学及动力学实验,考察稻壳生物炭对稀土元素Ce、Y的吸附特性。吸附热力学实验结果表明,RHBC对Ce、Y的吸附行为符合Langmuir模型,对Ce、Y的最大吸附量分别为19.80 mg•kg−1、8.61 mg•kg−1。动力学结果表明,RHBC对Ce、Y的吸附动力学过程符合Lagergren二级动力学模型, 吸附过程倾向于化学吸附。反应体系pH在3~7时,RHBC对Y的吸附效率随着pH的增大而增大,RHBC对Ce的吸附效率受溶液pH影响较小,pH3~7吸附效率均达到96%以上。
Abstract: The rice husk biochar (RHBC) was prepared with rice husk by pyrolysis at 550˚C under nitrogen atmosphere. Adsorption isotherm and kinetics study were investigated to determine the adsorp-tion capacities of rare earth element Ce, Y onto RHBC in solution. The adsorption results showed that the adsorption isotherm of Ce, Y onto rice husk biochar could be well described by Langmuir model, and the maximum adsorption capacities were 19.80 mg•kg−1 of Ce, and 8.61 mg•kg−1 of Y. The kinetics results showed that the adsorption process could be well fitted by Lagergren pseudo-second-order model, for a chemical adsorption process. In addition, in the solution pH range of 3 - 7, the removal rate of Y on RHBC enhanced significantly with the increasing pH, while the solution pH made a negligible effect on the removal rate of Ce onto RHBC, which were higher than 96%.
文章引用:唐璐, 刘丹, 程祖琴, 周丹, 刘鑫. 稻壳生物炭对稀土元素Ce、Y吸附效果的研究[J]. 化学工程与技术, 2017, 7(5): 188-198. https://doi.org/10.12677/HJCET.2017.75028

参考文献

[1] U.S.G.Survey (2014) Mineral Commodity Summaries. Rare Earths, 128-129.
[2] 池汝安, 田君. 风化壳淋积型稀土矿化工冶金[M]. 北京: 科学出版社, 2006.
[3] 罗才贵, 罗仙平, 苏佳, 等. 离子型稀土矿山环境问题及其治理方法[J]. 金属矿山, 2014, (6): 91-96.
[4] 池汝安, 田君, 罗仙平, 等. 风化壳淋积型稀土矿的基础研究[J]. 有色金属科学与工程, 2012, 3(4): 1-13.
[5] 李永绣, 张玲, 周新木. 南方离子型稀土的资源和环境保护性开采模式[J]. 稀土, 2010, 31(2): 80-85.
[6] 朱建华, 袁兆康, 胡敏. 稀土矿区生态环境稀土含量检测[J]. 中国公共卫生, 2006, 22(8): 950-951.
[7] 王志高, 王金荣, 彭文博, 等. 膜分离技术处理离子型稀土矿稀土开采废水[J]. 稀土, 2017, 38(1): 102-107.
[8] Zhu, Y., Zheng, Y. and Wang, A. (2015) A Simple Approach to Fabricate Granular Adsorbent for Adsorption of Rare Elements. International Journal of Biological Macromolecules, 72, 410-420.
https://doi.org/10.1016/j.ijbiomac.2014.08.039
[9] Anastopoulos, I., Bhatnagar, A. and Lima, E.C. (2016) Adsorption of Rare Earth Metals: A Review of Recent Literature. Journal of Molecular Liquids, 221, 954-962.
https://doi.org/10.1016/j.molliq.2016.06.076
[10] Galhoum, A.A., Mafhouz, M.G., Abdel-Rehem, S.T., et al. (2015) Cysteine-Functionalized Chitosan Magnetic Nano- Based Particles for the Recovery of Light and Heavy Rare Earth Metals: Uptake Kinetics and Sorption Isotherms. Nanomaterials, 5, 154-179.
https://doi.org/10.3390/nano5010154
[11] Xu, S., Zhang, S., Chen, K., et al. (2011) Biosorption of La3+ and Ce3+ by Agrobacterium sp. HN1. Journal of Rare Earths, 29, 265-270.
[12] Chunhua, X., Xinyi, C. and Caiping, Y. (2011) Enhanced Adsorption Behavior of Nd(III) onto D113-III Resin from Aqueous Solution. Journal of Rare Earths, 29, 979-985.
[13] Das, D., Jaya Sre Varshini, C. and Das, N. (2014) Recovery of Lanthanum(III) from Aqueous Solution using Biosorbents of Plant and Animal Origin: Batch and Column Studies. Minerals Engineering, 69, 40-56.
[14] Anagnostopoulos, V.A. and Symeopoulos, B.D. (2012) Sorption of Europium by Malt Spent Rootlets, a Low Cost Biosorbent: Effect of pH, Kinetics and Equilibrium Studies. Journal of Radioanalytical and Nuclear Chemistry, 295, 7-13.
https://doi.org/10.1007/s10967-012-1956-y
[15] Wang, Y.-Y., Lu, H.-H., Liu, Y.-X., et al. (2016) Ammonium Citrate-Modified Biochar: An Adsorbent for La(III) Ions from Aqueous Solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 509, 550-563.
[16] Ahmad, M., Rajapaksha, A.U., Lim, J.E., et al. (2014) Biochar as a Sorbent for Contaminant Management in Soil and Water a Review. Chemosphere, 99, 19-33.
[17] 吴伟祥, 孙雪, 董达, 生物质炭土壤环境效应[M]. 北京: 科学出版社, 2016.
[18] 高凯芳, 简敏菲, 余厚平, 等. 裂解温度对稻秆与稻壳制备生物炭表面官能团的影响[J]. 环境化学, 2016, 35(8): 1663-1669.
[19] Masulili, A., Utomo, W.H. and Ms, S. (2010) Rice Husk Biochar for Rice Based Cropping System in Acid Soil 1. The Characteristics of Rice Husk Biochar and Its Influence on the Properties of Acid Sulfate Soils and Rice Growth in West Kalimantan, Indonesia. Journal of Agricultural Science, 2, 39-47.
https://doi.org/10.5539/jas.v2n1p39
[20] 李飞跃, 谢越, 石磊, 等. 稻壳生物炭对水中氨氮的吸附[J]. 环境工程学报, 2015, 9(3): 1221-1226.
[21] 张蕊, 葛滢. 稻壳基活性炭制备及其对重金属吸附研究[J]. 环境污染与防治, 2011, 33(2): 41-46.
[22] 廖钦洪, 刘庆业, 蒙冕武, 等. 稻壳基活性炭的制备及其对亚甲基蓝吸附的研究[J]. 环境工程学报, 2011, 5(11): 2447-2452.
[23] 金俊伟, 黄晓惠. 稻壳、花生壳、大豆中生物炭去除水体中重金属离子的效果比较研究[J]. 农民致富之友, 2016(18).
[24] Komnitsas, K., Zaharaki, D., Bartzas, G., et al. (2014) Efficiency of Pecan Shells and Sawdust Biochar on Pb and Cu Adsorption. Desalination and Water Treatment, 57, 3237-3246.
https://doi.org/10.1080/19443994.2014.981227
[25] Wang, Z., Liu, G., Zheng, H., et al. (2015) Investigating the Mechanisms of Biochar’s Removal of Lead from Solution. Bioresource Technology, 177, 308-317.
[26] Fu, P., Hu, S., Xiang, J., et al. (2012) Evaluation of the Porous Structure Development of Chars from Pyrolysis of Rice Straw: Effects of Pyrolysis Temperature and Heating Rate. Journal of Analytical and Applied Pyrolysis, 98, 177-183.
[27] Yuan, H., Lu, T., Huang, H., et al. (2015) Influence of Pyrolysis Temperature on Physical and Chemical Properties of Biochar Made from Sewage Sludge. Journal of Analytical and Applied Pyrolysis, 112, 284-289.
[28] Melo, L.C.A., Coscione, A.R., Abreu, C.A., et al. (2013) Influence of Pyrolysis Temperature on Cadmium and Zine Sorption Capacity of Sugar Cane Straw Derived Biochar. Bioresources, 8, 4992-5004.
https://doi.org/10.15376/biores.8.4.4992-5004
[29] Gusiatin, Z.M., Kurkowski, R., Brym, S., et al. (2016) Properties of Biochars from Conventional and Alternative Feedstocks and Their Suitability for Metal Immobilization in Industrial Soil. Environmental Science and Pollution Research International, 23, 21249-21261.
https://doi.org/10.1007/s11356-016-7335-4
[30] American Society for Testing and Materials (ASTM) (2014) ASTM D2867-09: Standard Test Methods for Moisture in Activated Carbon. ASTM, West Conshohocken.
[31] American Society for Testing and Materials (ASTM) (2011) ASTM D2866-11: Standard Test Method for Total Ash Content of Activated Carbon. ASTM, West Conshohocken.
[32] Luo, L., Xu, C., Chen, Z., et al. (2015) Properties of Biomass-Derived Biochars: Combined Effects of Operating Conditions and Biomass Types. Bioresource Technology, 192, 83-89.
[33] Chen, T., Zhou, Z., Han, R., et al. (2015) Adsorption of Cadmium by Biochar Derived from Municipal Sewage Sludge: Impact Factors and Adsorption Mechanism. Chemosphere, 134, 286-293.
[34] 王彤彤, 马江波, 曲东, 等. 两种木材生物炭对铜离子的吸附特性及其机制[J]. 环境科学, 2017, 38(5): 2161-2171.
[35] 简敏菲, 高凯芳, 余厚平. 不同裂解温度对水稻秸秆制备生物炭及其特性的影响[J]. 环境科学学报, 2016, 36(5): 1757-1765.
[36] 郑庆福, 王永和, 孙月光, 等. 不同物料和炭化方式制备生物炭结构性质的FTIR研究[J]. 光谱学与光谱分析, 2014, 34(4): 962-966.
[37] Chia, C.H., Gong, B., Joseph, S.D., et al. (2012) Imaging of Mineral-Enriched Biochar by FTIR, Raman and SEM-EDX. Vibrational Spectroscopy, 62, 248-257.
[38] Chen, X., Chen, G., Chen, L., et al. (2011) Adsorption of Copper and Zinc by Biochars Produced from Pyrolysis of Hardwood and Corn Straw in Aqueous Solution. Bioresource Technology, 102, 8877-8884.
[39] Boraia, E.H., Hameda, M.G., El-kamasha, A.M., et al. (2015) Template Polymerization Synthesis of Hydrogel and Silica Composite for Sorption of Some Rare Earth Elements. Journal of Colloid and Interface Science, 456, 228-240.
[40] Peruchi, L.M., Fostier, A.H. and Rath, S. (2015) Sorption of Norfloxacin in Soils: Analytical Method, Kinetics and Freundlich Isotherms. Chemosphere, 119C, 310-317.
[41] Shaaban, A., Se, S.-M., Mitan, N.M.M., et al. (2013) Characterization of Biochar Derived from Rubber Wood Sawdust through Slow Pyrolysis on Surface Porosities and Functional Groups. Procedia Engineering, 68, 365-371.
[42] 薛杨, 邱素芬, 许端平, 等. 不同粒级的煤胶体对汞的吸附动力学[J]. 环境工程学报, 2017, 11(5): 3187-3194.
[43] Smith, Y.R., Bhattacharyya, D., Willhard, T., et al. (2016) Adsorption of Aqueous Rare Earth Elements Using Carbon Black Derived from Recycled Tires. Chemical Engineering Journal, 296, 102-111.
[44] 张红云, 杨慧珠, 薛印, 等. 改性蔗渣纤维对稀土离子吸附特性研究[J]. 中国稀土学报, 2017, 35(2): 231-237.
[45] Peng, P., Lang, Y.-H. and Wang, X.-M. (2016) Adsorption Behavior and Mechanism of Pentachlorophenol on Reed Biochars: pH Effect, Pyrolysis Temperature, Hydrochloric Acid Treatment and Isotherms. Ecological Engineering, 90, 225-233.
[46] Fristak, V., Pipiska, M., Lesny, J., et al. (2015) Utilization of Biochar Sorbents for Cd2+, Zn2+, and Cu2+ Ions Separation from Aqueous Solutions: Comparative Study. Environmental Monitoring and Assessment, 187, 4093.
https://doi.org/10.1007/s10661-014-4093-y