CMP  >> Vol. 6 No. 3 (August 2017)

    Research of Loop Shift Behavior in Soft Mag-netic Amorphous Ribbons

  • 全文下载: PDF(2344KB) HTML   XML   PP.64-73   DOI: 10.12677/CMP.2017.63009  
  • 下载量: 729  浏览量: 1,434  



热磁退火回线偏移行为微晶相非晶带磁锻炼单向各向异性Field Annealing Asymmetrical Loop Crystalline Phase Amorphous Ribbon Magnetic Training Uni-directional Anisotropy



In this dissertation, the formations of displaced loops behavior were obtained by studying series of Co-based and Fe-based amorphous ribbons. And the relevant factors including induced magnetic anisotropy, magnetic domain and torque were investigated. Further, the main origin of loop shift of ribbons was clearly explained. Finally, we also tried to find a way, by which the shift field can be modulated.

周磊, 何峻, 喻晓军, 李波. 软磁非晶薄带磁滞回线偏移行为研究[J]. 凝聚态物理学进展, 2017, 6(3): 64-73.


[1] Meiklejohn, W.P. and Bean, C.P. (1956) New Magnetic Anisotropy. Physics Review, 102, 1413-1414.
[2] Meiklejohn, W.H. and Bean, C.P. (1957) New Magnetic Anisotropy. Physics Review, 105, 904-913.
[3] Bean, C.P. (1959) Structure and Properties of Thin Films. Wiley, New York, 331.
[4] Berkowitz, A.E. and Kentaro, T. (1999) Exchange Anisotropy. Journal of Magnetism and Magnetic Materials, 200, 552-570.
[5] Baruth, A., Keavney, D.J., Burton, J.D., et al. (2006) Origin of the Inter-layer Exchange Coupling in [Co∕Pt]∕NiO∕[Co∕Pt] Multilayers Studied with XAS, XMCD, and Micromagnetic Modeling. Physics Review B, 74, Article ID: 054419.
[6] Polisetty, S. (2009) Exchange Bias Training Effect in Magnetically Coupled Bilayers. Doctor’s Thesis, University of Nebraska, Lincoln.
[7] March, N.H., Lambin, P. and Herman, F. (1984) Cooperative Mag-netic Properties in Single-and Two-Phase 3d Metallic Alloys Relevant to Exchange and Magnetocrystalline Anisotropy. Journal of Magnetism and Magnetic Materials, 44, 1-19.
[8] Yelon, A., Francombe, M.H. and Hoffman, R.W. (1971) Physics of Thin Films. Academic Press, New York, 205.
[9] Moran, T.J., Gallego, J.M. and Schuller, I.K. (1995) Increased Exchange Anisotropy Due to Disorder at Permalloy/CoO Interfaces. Journal of Applied Physics, 78, 1887.
[10] Berkowitz, A.E. and Greiner, J.H. (1965) Static Response Characteristics for a Carbon Bolometer. Journal of Applied Physics, 36, 3330.
[11] Wohlfarth, E.P. (1959) Hard Magnetic Materials. Advances in Physics, 8, 87-224.
[12] Schmid, H. (1960) Contribution to the Exchange Phenomena between Ferro-magnetics and Antiferromagnetics. Cobalt, 6, 1-7.
[13] Fukamichi, K. (1997) AF Properties. Journal of the Magnetics Society of Japan, 21, 1062.
[14] Takahashi, M., Yanai, A., Taguchi, S., et al. (1980) A Study of Exchange Anisotropy in Co-CoO Evaporated Thin Films. Japanese Journal of Applied Physics, 19, 1093-1106.
[15] Jungblut, R., Coehoorn, R., Johnson, M.T., et al. (1994) Orientational Dependence of the Exchange Biasing in Molecular-Beam-Epitaxy-Grown Ni80Fe20/Fe50Mn50 Bilayers. Journal of Applied Physics, 75, 6659.
[16] Kohmoto, O., Yamaguchi, N., Ohya, K., et al. (1978) Change of the Magnetic Property in Some Amorphous Alloys by Low Temperature Annealing. Japanese Journal of Applied Physics, 17, 257-258.
[17] Takahashi, M., Miyazaki, T. and Watanabe, A. (1979) The Change in Static Magnetic Prop-erties with Isothermal Annealing in Amorphous Ferromagnetic Alloys. The Journal of the Japan Institute of Metals, 43, 339-347.
[18] Ohta, K., Matsuyama, T., Kajiura, M., et al. (1980) Disaccommodation of Magnetic Permeability and Induced Anisotropy in Amorphous Fe-Co Alloys. Journal of Magnetism and Magnetic Materials, 19, 165-167.
[19] 陈笃行, 潘孝硕. 近零磁伸非晶环样磁滞回线的偏移和消除方法[J]. 金属学报, 1983, 19(3): 16-22.
[20] 陈文智. 非晶合金磁滞回线的非对称现象[J]. 金属功能材料, 1997(4): 155-158.
[21] 李志华, 陈文智, 张国祥. 铁基超微晶合金磁滞回线偏移的研究[J]. 金属功能材料, 1994(2): 14-18.
[22] Luděk, K., Michal, M., Kamil, P., et al. (2005) Asymmetric Giant Magnetoimpedance in Stress-Field Annealed CoFeBSi Amorphous Ribbons. Journal of Magnetism and Magnetic Materials, 290-291, 1131-1133.
[23] Duque, J.G.S., De Araújo, A.E.P. and Knobel, M. (2006) Asymmetric Imped-ance in Field-Annealed Co-Based Amorphous Wires and Its Bias Field Dependence. Journal of Magnetism and Magnetic Materials, 299, 419-424.
[24] Kraus, L., Malátek, M., Yoon, S.S., et al. (2006) Asymmetric Giant Magne-toimpedance in Twisted CoFeCrSiB Amorphous Ribbons. Journal of Magnetism and Magnetic Materials, 304, 214-217.
[25] Park, D.G., Moon, E.J., Rheem, Y.W., et al. (2003) The GMI Profiles of Sur-face-Removed Amorphous Ribbon. Physica B: Condensed Matter, 327, 357-359.
[26] Kim, C.G., Kim, J.B., Yoon, S.S., et al. (2001) Temperature Dependence of Asymmetric GMI Profile. Journal of Magnetism and Magnetic Materials, 226-230, 700-703.
[27] Shalyguina, E.E., Komarova, M.A., Molokanov, V.V., et al. (2003) Near-Surface Magnetic Properties and Giant Magnetoimpedance of Co-Based Amorphous Ribbons. Journal of Magnetism and Mag-netic Materials, 258-259, 174-176.
[28] Zhou, L., He, J., Li, X., et al. (2009) Exchange Bias Behaviour of Amor-phous CoFeNiSiB Ribbons. Journal of Physics D: Applied Physics, 42, Article ID: 195001.
[29] He, J., Zhou, L., Zhao, D.L., et al. (2009) Hysteresis Loop Shift Behavior of CoFeSiB Amorphous Ribbons. Journal of Materials Research, 24, 1607-1610.
[30] Zhou, L., He, J., Li, X., Li, B. and Zhao, D.L. (2010) The Influence of the Magnetic His-tory on the Magnetizing Process of Fe-Based Amorphous Ribbons. Journal of Materials Research, 25, 1728-1732.