OJTT  >> Vol. 6 No. 5 (September 2017)

    基于BP神经网络算法的路基工后沉降预测分析
    Prediction Analysis of Subgrade Settlement after Construction Based on Neural Network Algorithm

  • 全文下载: PDF(1400KB) HTML   XML   PP.179-184   DOI: 10.12677/OJTT.2017.65024  
  • 下载量: 781  浏览量: 1,661  

作者:  

高荣春,陈 晨:云南省交通规划设计研究院,云南 昆明

关键词:
道路工程工后沉降BP神经网络算法传递函数连接权值Road Engineering Post Construction Settlement BP Neural Network Algorithm Transfer Function Connection Weight

摘要:

路基工后沉降对道路的运营维护具有重要影响,基于BP神经网络算法的强大非线性映射能力,以时间为输入、沉降量为输出进行神经网络训练,建立沉降与时间的函数关系。工程案例分析表明采用BP神经网络算法进行路基工后沉降预测具有一定的精度,能够满足工程要求。

Subgrade settlement after construction plays an important role in operation and maintenance of road. As powerful nonlinear mapping ability of BP neural network algorithm, time and settlement are taken as input and output of neural network algorithm, respectively. Function relationship between settlement and time is established after neural network training. The engineering case analysis shows that the BP neural network algorithm has a certain accuracy to predict the post construction settlement of the subgrade and can meet the engineering requirements.

文章引用:
高荣春, 陈晨. 基于BP神经网络算法的路基工后沉降预测分析[J]. 交通技术, 2017, 6(5): 179-184. https://doi.org/10.12677/OJTT.2017.65024

参考文献

[1] 冯怀平, 耿会岭, 韩博文, 等. 非饱和土地区高速铁路路基沉降预测模型[J]. 岩土工程学报, 2017, 39(6): 1089-1095.
[2] 曹文贵, 印鹏, 贺敏, 等. 基于数据新旧程度和预测取值区间调整的沉降组合预测方法[J]. 岩土力学, 2017, 38(2): 534-540.
[3] 王海英, 常肖, 阮祺, 等. 建筑垃圾填埋路基沉降预测的三点-星野法[J]. 铁道科学与工程学报, 2017, 14(3): 473-478.
[4] 李景林, 董淑海, 杨杰, 等. 双屈服面模型在高填方路基工后沉降分析中的应用[J]. 公路, 2017(3): 1-6.
[5] 姜屏. 基于位移监测信息的边坡稳定性实时评判分析方法[D]: [博士学位论文]. 长春: 吉林大学, 2012.
[6] 冯震, 祝海涛, 熊仲华. 泊松模型预测路基沉降[J]. 华东地质学院学报, 2003, 20(4): 364-366.