金属纳米光栅表面等离子体共振光学传播特性
Surface Plasmon Resonance Studies on Optical Propagation Properties of Metallic Nano-Gratings
DOI: 10.12677/OJNS.2017.54047, PDF, HTML, XML, 下载: 1,652  浏览: 3,074  科研立项经费支持
作者: 李海颖, 段雪松:河北工业大学理学院,天津
关键词: 金属纳米光栅表面等离子体共振局域化形状Metallic Nano-Gratings Surface Plasmon Resonance Localized Shape
摘要: 本文分析了几种典型沟槽形状的金属纳米光栅(MNG)的光波传播特性。利用多重多级子程序法(MMP)计算了光栅形状和入射光波长对反射率和透射率的影响。结果显示,金属纳米光栅存在表面等离子体共振(SPR)和局域化表面等离子体共振(LSPR)两种共振模式。LSPR共振波长强烈依赖于光栅的沟槽形状、槽深、槽宽等结构参数,呈现宽带光谱响应机制,而SPR更多的依赖于光栅周期大小,呈现窄带光谱响应机制。两种共振模式的不同特性拓展了我们对金属纳米光栅的光学传播特性的认识,这对根据需要合理设计金属纳米光栅有重要的指导意义。
Abstract: Optical propagation properties of metallic nano-gratings (MNG) with several classic groove shapes are analyzed. Influences of grating shape parameters and incident wavelength on reflectivity and transmission are calculated by means of multiple multipole program (MMP). Our results demonstrate that there are two resonant modes on the surface of MNG, surface plasmon resonance (SPR) and localized surface plasmon resonance (LSPR), respectively. LSPR presents a kind of broad band spectral response machanism, whose resonant wavelength strongly depends on groove shapes, groove depth and groove width parameters. SPR presents a kind of narrow band spectral response machanism, and its resonant wavelength is more dependent on grating period parameters. The different characteristics of the two resonant modes increase our knowledge about optical propagation properties of MNG. This investigation can be used as a guideline in designing metallic nano-gratings for certain applications.
文章引用:李海颖, 段雪松. 金属纳米光栅表面等离子体共振光学传播特性[J]. 自然科学, 2017, 5(4): 346-352. https://doi.org/10.12677/OJNS.2017.54047

参考文献

[1] Ebbesen, T.W., Lezec, H.J., Ghaemi, H.F., Thio, T. and Wolff, P.A. (1998) Surface Plasmons Enhance Optical Transmission through Subwavelength Holes. Nature, 391, 667.
https://doi.org/10.1038/35570
[2] Pendry, J.B., Martin-Moreno, L. and Garcia-Vidal, F.J. (2004) Mimicking Surface Plasmons with Structured Surface. Science, 305, 847-848.
https://doi.org/10.1126/science.1098999
[3] 顾本源. 表面等离子体亚波长光学原理和新颖效应[J]. 物理, 2007, 36(4): 280-287.
[4] 马文英, 杨欢, 刘娟意, 等. 金属纳米结构的形状对其消光特性的影响研究[J]. 光学学报, 2010, 30(9): 2629-2633.
[5] Maurya, J.B., Prajapati, Y.K., Singh, V., Saini, J.P. and Tripathi, R. (2016) Improved Performance of the Surface Plasmon Resonance Biosensor Based on Graphene or MoS2 Using Silicon. Optics Communications, 359, 426-434.
https://doi.org/10.1016/j.optcom.2015.10.010
[6] 汪国平. 表面等离子体激元纳米集成光子器件[J]. 物理, 2006, 35(6): 502-507.
[7] Martin-Moreno, L., Garcia-Vidal, F.J., et al. (2001) Theory of Extraordinary Optical Transmission through Subwavelength Hole Arrays. Physical Review Letters, 86, 1114.
https://doi.org/10.1103/PhysRevLett.86.1114
[8] Raether, H. (1988) Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Springer, 111, 91-116. ://doi.org/10.1007/BFb0048323
[9] Hori, H., Tawa, K., et al. (2009) Influence of Groove Depth and Surface Profile on Fluorescence Enhancement by Grating-Coupled Surface Plasmon Resonance. Optical Review, 16, 216-221.
https://doi.org/10.1007/s10043-009-0040-5
[10] Li, H., Luo, X., Du, C., Chen, X. and Fu, Y. (2008) Analysis of Sensing Performance of Gaussian-Shaped Metallic Nano-Gratings. Journal of Nanophotonics, 2, 023508.
https://doi.org/10.1117/1.2973901
[11] Li, H., Du, C., Luo, X. and Chen, X. (2007) Propagation Properties of Gaussian-Shaped and Double Sides Unsymmetrical Metallic Nano-Corrugations. Chinese Physics Letters, 24, 2870-2872.
https://doi.org/10.1088/0256-307X/24/10/044
[12] Li, H., Zhang, Z., Luo, X., Chen, X. and Fu, Y. (2010) Design of Gaus-sian-Shaped and Double Sides Flanked Metallic Nano-Grating Surface Plasma Resonance Biosensors.
https://doi.org/10.1109/SOPO.2010.5504056
[13] Hecht, J. 表面等离子激元能突破传统光学器件的极限[J]. 闫利芬, 译. 激光世界, 2005(8): 26-28.
[14] Johnson, P.B. and Christy, R.W. (1972) Optical Constants of the Noble Metals. Physical Review B, 6, 4370-4379.
https://doi.org/10.1103/PhysRevB.6.4370
[15] Tan, W.-C., Preist, T.W. and Sambles, J.R. (2000) Resonant Tunneling of Light through Thin Metal Films via Strongly Localized Surface Plasmons. Physical Review B, 62, 134-138.
[16] Hafner, Ch. (1999) The Multiple Multipole Program (MMP) and the Generalized Multipole Technique (GMT). Elsevier, Amsterdam.
[17] Moreno, E. and Hafner, C. (2002) Multiple Multipole Method with Automatic Multipole Setting Applied to the Simulation of Surface Plasmons in Metallic Nanostructures. Journal of the Optical Society of America, 19, 101-111.
https://doi.org/10.1364/JOSAA.19.000101