掺镱光纤光暗化研究进展——溶胶凝胶法抑制光暗化
Research Progress on Photodarkening of Yb-Doped Fiber—Sol-Gel Method to Suppress Photodarkening
DOI: 10.12677/MS.2017.76075, PDF, HTML, XML, 下载: 1,868  浏览: 2,470 
作者: 谢封侯, 于春雷, 冯素雅, 胡丽丽:上海光学精密机械研究所,上海
关键词: 掺镱光纤光暗化漂白溶胶凝胶法Yb-Doped Fiber Photodarkening Bleach Sol-Gel Method
摘要: 高功率掺镱光纤激光器的光暗化现象导致激光器功率降低,阻碍了激光器功率的进一步提升,因此研究掺镱光纤光暗化现象对促进掺镱光纤激光器的发展具有重要意义。本文首先从光暗化的表征、光暗化对激光器的影响及其机理,光暗化的影响因素及抑制手段方面对光暗化进行了综述,阐述了光暗化的研究进展;然后简单介绍了采用溶胶凝胶法工艺制备掺镱光纤的研究进展,并提出了采用溶胶凝胶法制备的掺镱光纤可能具有抑制光暗化效果的猜想。
Abstract: Photodarkening of high power Yb-doped fiber lasers leads to the decrease of laser power, which limits the further development of high power laser. Therefore, it is significantly important to study the photodarkening behavior of Yb-doped fiber lasers. Firstly, the research progress of photodarkening in Yb-doped fiber is reviewed in this paper, including characterization, impact factors, mechanism, and suppression. Then based on the research progress of Sol-Gel method, it is proposed that the Yb-doped fiber prepared by Sol-Gel method may inhibit photodarkening.
文章引用:谢封侯, 于春雷, 冯素雅, 胡丽丽. 掺镱光纤光暗化研究进展——溶胶凝胶法抑制光暗化[J]. 材料科学, 2017, 7(6): 567-575. https://doi.org/10.12677/MS.2017.76075

参考文献

[1] Kilkenny, J.D., Alexander, N.B., Nikroo, A., Steinman, D.A. and Nobile, A. (2005) Laser Targets Compensate for Limitations in Inertial Confinement Fusion Drivers. Laser & Particle Beams, 23, 475-482.
https://doi.org/10.1017/S0263034605050664
[2] Hoult, T. 准连续激光器在焊接应用中的突破[J]. 金属加工: 热加工, 2016(4): 31-33.
[3] Gapontsev, V., Fomin, V., Ferin, A. and Abramov, M. (2010) Diffraction Limited Ul-tra-High-Power Fiber Lasers.
[4] 中国光电网. 我国首台2万瓦光纤激光器正式装机打破国外技术垄断[EB/OL]. http://www.optochina.net/html/zx/xw/48008.html, 2016.
[5] 朱宗玖, 许立新, 毛庆和, 刘文清. 高掺杂浓度掺镱光纤的光子暗化效应[J]. 光子学报, 2007(36): 26-29.
[6] Paschotta, R., Nilsson, J., Barber, P.R., Caplen, J.E., Tropper, A.C. and Hanna, D.C. (1997) Lifetime Quenching in Yb-Doped Fibres. Optics Communications, 136, 375-378.
https://doi.org/10.1016/S0030-4018(96)00720-1
[7] Koponen, J.J., Söderlund, M.J. and Tammela, S.K.T. (2005) Photodarkening in Ytterbium-Doped Silica Fibers. Proceedings of SPIE, 5990, 72-81.
https://doi.org/10.1117/12.630499
[8] Jetschke, S., Unger, S., Röpke, U. and Kirchhof, J. (2007) Photodarkening in Yb-doped Fibers: Experimental Evidence of Equilibrium States Depending on the Pump Power. Optics Express, 15, 14838-14843.
https://doi.org/10.1364/OE.15.014838
[9] Olivero, M., Boetti, N., Milanese, D. and Perrone, G. (2011) Meas-urement Techniques for the Evaluation of Photodarkening in Fibers for High-Power Lasers. Proceedings of SPIE, 7914, 79142U-79142U-6.
https://doi.org/10.1117/12.876276
[10] Manek-Hönninger, I., Boullet, J., Cardinal, T., Guillen, F., Ermeneux, S., Podgorski, M., Bello, D.R. and Salin, F. (2007) Photodarkening and Photobleaching of an Ytterbium-Doped Silica Double-Clad LMA Fiber. Optics Express, 15, 1606-1611.
https://doi.org/10.1364/OE.15.001606
[11] Piccoli, R., Robin, T., Méchin, D. and Taccheo, S. (2014) Impact of Photodarkening on Yb Lifetime in Al-Silicate Fibres and on the Rate-Equation System. SPIE OPTO.
[12] Nanxi, L., Seongwoo, Y., Xia, Y., Jain, D. and Sahu, J.K. (2014) Pump Power Depreciation by Photodarkening in Ytterbium-Doped Fibers and Amplifiers. IEEE Photonics Technology Letters, 26, 115-118.
https://doi.org/10.1109/LPT.2013.2289965
[13] Otto, H., Modsching, N., Jauregui, C., Limpert, J. and Tünner-mann, A. (2015) Impact of Photodarkening on the Mode Instability Threshold. Optics Express, 23, 15265-15277.
https://doi.org/10.1364/OE.23.015265
[14] Yoo, S., Basu, C., Boyland, A.J., Sones, C., Nilsson, J., Sahu, J.K. and Payne, D. (2007) Photodarkening in Yb-Doped Aluminosilicate Fibers Induced by 488 nm Irradiation. Optics Letters, 32, 1626-1628.
https://doi.org/10.1364/OL.32.001626
[15] Engholm, M., Norin, L. and Aberg, D. (2007) Strong UV Absorption and Visible Luminescence in Ytterbium-Doped Aluminosilicate Glass under UV Excitation. Optics Letters, 32, 3352-3354.
https://doi.org/10.1364/OL.32.003352
[16] Kilabayashi, T., Ikeda, M., Nakai, M., Sakai, T., Himeno, K. and Ohashi, K. (2006) Population Inversion Factor Dependence of Photodarkening of Yb-Doped Fibers and Its Suppression by Highly Aluminum Doping. Optical Fiber Communication Conference, 2006 and the 2006 National Fiber Optic Engineers Conference.
[17] Jetschke, S. and Röpke, U. (2009) Power-Law Dependence of the Photo-darkening Rate Constant on the Inversion in Yb Doped Fibers. Optics Letters, 34, 109-111.
https://doi.org/10.1364/OL.34.000109
[18] Koponen, J., Laurila, M. and Hotoleanu, M. (2008) Inversion Behavior in Core- and Cladding-Pumped Yb-Doped Fiber Photodarkening Measurements. Applied Optics, 47, 4522-4528.
https://doi.org/10.1364/AO.47.004522
[19] Jasapara, J., Andrejco, M., Digiovanni, D. and Windeler, R. (2006) Effect of Heat and H2 Gas on the Photo-Darkening of Yb+3 Fibers. Quantum Electronics and Laser Science Conference Lasers and Electro-Optics, CLEO/QELS 2006.
[20] Engholm, M. and Norin, L. (2008) Reduction of Photodarkening in Yb/Al-Doped Fiber Lasers. Proceedings of SPIE the International Society for Optical Engineering, 6873.
https://doi.org/10.1117/12.763218
[21] Jetschke, S., Unger, S., Leich, M., Reichel, V. and Kirchhof, J. (2008) Photodarkening in Yb-Doped Silica Fibers: Influence of the Atmosphere during Preform Collapsing. Proceedings of SPIE—The International Society for Optical Engineering, 68731G.
https://doi.org/10.1117/12.776638
[22] Gebavi, H., Taccheo, S., Milanese, D., Monteville, A., Le, G.O., Landais, D., Mechin, D., Tregoat, D., Cadier, B. and Robin, T. (2011) Temporal Evolution and Correlation between Cooperative Luminescence and Photodarkening in Ytterbium Doped Silica Fibers. Optics Express, 19, 25077-25083.
https://doi.org/10.1364/OE.19.025077
[23] Schuster, K., Grimm, S., Kalide, A., Dellith, J., Leich, M., Schwuchow, A., Langner, A., Schötz, G. and Bartelt, H. (2015) Evolution of Fluorine Doping Following the REPUSIL Process for the Adjustment of Optical Properties of Silica Materials. Optical Materials Express, 5, 887-897.
https://doi.org/10.1364/OME.5.000887
[24] Shubin, A.V., Yashkov, M.V., Melkumov, M.A. and Smirnov, S.A. (2007) Photodarkening of Alumosilicate and Phosphosilicate Yb-Doped Fibers. European Conference on Lasers and Electro-Optics, 2007 and the International Quantum Electronics Conference.
[25] Jetschke, S., Unger, S., Schwuchow, A., Leich, M. and Kirchhof, J. (2008) Efficient Yb Laser Fibers with Low Photodarkening by Optimization of the Core Composition. Optics Express, 16, 15540-15545.
https://doi.org/10.1364/OE.16.015540
[26] Mattsson, K.E., Knudsen, S.N., Cadier, B. and Robin, T. (2008) Photo Darkening in Ytterbium Co-Doped Silica Material. Lasers and Applications in Science and Engineering, San Jose, 25 February 2008, 68731C.
[27] Kirchhof, J., Unger, S., Jetschke, S., Leich, M. and Reichel, V. (2009) Yb-Doped Silica-Based Laser Fibers: Correlation of Photodarkening Kinetics and Related Optical Properties with the Glass Composition. Proceedings of SPIE—The International Society for Optical Engineering, 7195, 71950S.
https://doi.org/10.1117/12.808918
[28] Suzuki, S., Mckay, H.A., Peng, X., Fu, L. and Dong, L. (2009) Highly Ytterbium-Doped Silica Fibers with Low Photo-Darkening. Optics Express, 17, 9924-9932.
https://doi.org/10.1364/OE.17.009924
[29] Laperle, P., Desbiens, L. and Proulx, A. (2010) Relations between Phosphorus/Aluminum Concentration Ratio and Photodarkening Rate and Loss in Yb-Doped Silica Fibers. Proceedings of SPIE—The International Society for Optical Engineering, 7580, 75801Y.
[30] Deschamps, T., Ollier, N., Vezin, H. and Gonnet, C. (2012) Clusters Dissolution of Yb3+ in Codoped SiO2-Al2O3-P2O5 Glass Fiber and Its Relevance to Photodarkening. Journal of Chemical Physics, 136, Article ID: 014503.
https://doi.org/10.1063/1.3673792
[31] Jetschke, S., Unger, S., Leich, M. and Kirchhof, J. (2012) Photodarkening Kinetics as a Function of Yb Concentration and the Role of Al Codoping. Applied Optics, 51, 7758-7764.
https://doi.org/10.1364/AO.51.007758
[32] Kim, S.J., Hujimaki, Y., Taniguchi, H., Kinoshita, H. and Sato, K. (2014) Fabrication and Characterization of a Phosphosilicate YDF with High Yb Absorbance and Low Background Loss. Proceedings of SPIE—The International Society for Optical Engineering, Vol. 8961, 18-20.
[33] Rybaltovsky, A.A., Bobkov, K.K., Umnikov, A.A. and Dianov, E.M. (2014) The Yb-Doped Aluminosilicate Fibers Photodarkening Mechanism Based on the Charge-Transfer State Excitation. Proceedings of SPIE—The International Society for Optical Engineering, Vol. 8961, 18-20.
[34] Engholm, M., Jelger, P., Laurell, F. and Norin, L. (2009) Improved Photo-darkening Resistivity in Ytterbium-Doped Fiber Lasers by Cerium Codoping. Optics Letters, 34, 1285-1287.
https://doi.org/10.1364/OL.34.001285
[35] Jelger, P., Engholm, M., Norin, L. and Laurell, F. (2010) Degrada-tion-Resistant Lasing at 980 nm in a Yb/Ce/Al-Doped Silica Fiber. Journal of the Optical Society of America B, 27, 338-342.
https://doi.org/10.1364/JOSAB.27.000338
[36] Sheng, Y., Yang, L., Luan, H., Liu, Z., Yu, Y., Li, J. and Dai, N. (2012) Improvement of Radiation Resistance by Introducing CeO2 in Yb-Doped Silicate Glasses. Journal of Nuclear Materials, 427, 58-61.
[37] Chen, G., Wang, Y.B., Xie, L. and Xing, Y.B. (2013) Self-Bleaching Phenomenon Ob-served in the Ce/Yb Co-Doped Silica Fiber. CLEO: Science and Innovations, San Jose, 9-14 June 2013.
[38] Unger, S., Jetschke, S. and Kirchhof, J. (2013) Optical Properties of Cerium-Codoped High Power Laser Fibers. Proceedings SPIE, 86, 5997-6001.
https://doi.org/10.1117/12.2002399
[39] Jetschke, S., Leich, M., Unger, S., Schwuchow, A. and Kirchhof, J. (2011) Influence of Tm- or Er-Codoping on the Photodarkening Kinetics in Yb Fibers. Optics Express, 19, 14473-14478.
https://doi.org/10.1364/OE.19.014473
[40] Morasse, B., Chatigny, S., Gagnon, É., Hovington, C., Martin, J. and Sandro, J.D. (2007) Low Photodarkening Single Cladding Ytterbium Fibre Amplifier.
[41] Fujimoto, Y., Sugiyama, S., Murakami, M., Nakano, H., Sato, T. and Shiraga, H. (2013) Suppression Mechanism by Ca Additive of Photo-Darkening Effect in Yb-Doped Silica Glass Fiber. Lasers and Electro-Optics, San Jose, 9-14 June 2013, 1-2.
[42] Sakaguchi, Y., Fujimoto, Y., Masuda, M., Miyanaga, N. and Nakano, H. (2016) Suppression of Pho-to-Darkening Effect in Yb-Doped Silica Glass Fiber by Co-Doping of Group 2 Element. Journal of Non-Crystalline Solids, 440, 85-89.
[43] Reichel, V. (2009) Influence of Aluminum-Phosphorus Codoping on Optical Properties of Ytterbium-Doped Laser Fibers. Proceedings of SPIE—The International Society for Optical Engineering, 7212, 72121B.
[44] Leich, M., Jetschke, S., Unger, S. and Reichel, V. (2009) Acceleration of Photodarkening Measurements in Yb-Doped Fibers by Enhanced Temperatures. European Conference on Lasers and Electro-Optics 2009 and the European Quantum Electronics Conference.
[45] Leich, M., Röpke, U., Jetschke, S., Unger, S., Reichel, V. and Kirchhof, J. (2009) Non-Isothermal Bleaching of Photodarkened Yb-Doped Fibers. Optics Express, 17, 12588-12593.
https://doi.org/10.1364/OE.17.012588
[46] Söderlund, M.J., Jj, M.I.P., Koplow, J.P. and Honkanen, S. (2009) Thermal Bleaching of Photodarkening-Induced Loss in Ytterbium-Doped Fibers. Optics Letters, 34, 2637-2639.
https://doi.org/10.1364/OL.34.002637
[47] Söderlund, M.J. and Ponsoda, J.M.I. (2009) Heat-Induced Darkening and Spectral Broadening in Photodarkened Ytterbium-Doped Fiber under Thermal Cycling. Optics Express, 17, 9940-9946.
https://doi.org/10.1364/OE.17.009940
[48] Gebavi, H., Taccheo, S., Lablonde, L., Cadier, B., Robin, T., Méchin, D. and Tregoat, D. (2013) Mitigation of Photodarkening Phenomenon in Fiber Lasers by 633 nm Light Exposure. Optics Letters, 38, 196-198.
https://doi.org/10.1364/OL.38.000196
[49] Riccoli, R., Gebavi, H., Lablonde, L. and Cadier, B. (2013) Evidence of Photodarkening Mitigation in Yb-Doped Fiber Lasers by Low Power 405 nm Radiation. IEEE Photonics Technology Letters, 26, 50-53.
[50] Chávez, A.D.G., Kir’Yanov, A.V., Barmenkov, Y.O. and Il’Ichev, N.N. (2007) Reversible Photo-Darkening and Resonant Photo-Bleaching of Ytterbium-Doped Silica Fiber at In-Core 977-nm and 543-nm Irradiation. Laser Physics Letters, 4, 734-739.
https://doi.org/10.1002/lapl.200710053
[51] Zhao, N., Xing, Y.B., Li, J.M., Liao, L., Wang, Y.B., Peng, J.G., Yang, L.Y., Dai, N.L., Li, H.Q. and Li, J.Y. (2015) 793 nm Pump Induced Photo-Bleaching of Photo-Darkened Yb3+-Doped Fibers. Optics Express, 23, 25272-25278.
https://doi.org/10.1364/OE.23.025272
[52] Pedrazza, U., Romano, V. and Lüthy, W. (2007) Yb: Al: Sol-Gel Silica Glass Fiber Laser. Optical Materials, 29, 905-907.
[53] Chen, G., Li, H., Huang, J., Xu, L., Liu, L., Gu, S., He, Y., Li, Y. and Li, Y. (2009) Optical Properties and Laser Output of Heavily Yb-Doped Fiber Prepared by Sol-Gel Method and DC-RTA Technique. Journal of Lightwave Technology, 26, 3256-3260.