CSA  >> Vol. 7 No. 9 (September 2017)

    An Image Tampering Detection Algorithm Based on the Posterior Probability and Color Filter Array Artifacts

  • 全文下载: PDF(1562KB) HTML   XML   PP.850-857   DOI: 10.12677/CSA.2017.79097  
  • 下载量: 80  浏览量: 112  


魏金巧,王 英:青岛大学电子信息学院,山东 青岛

后验概率滤色阵列特性高斯混合模型似然率图像篡改检测Posterior Probability Color Filter Array Artifacts Gaussian Mixture Model Likelihood Ratio Image Tempering Detection



Focused on the artifacts between the three primaries of an image introduced by the interpolation algorithm during its acquisition process, an image tampering detection algorithm based on the posterior probability and the color filter array artifacts is proposed. Firstly, the green channel component of the image is extracted, and the two-dimensional predictive filter is used to construct the predictive error function. Then the histograms’ character of original and tampering images is analyzed, and then the Gaussian mixture statistical model is established. EM algorithm is applied to estimate the model parameters. Then the posterior probability of each sub-block as an original block is calculated, and the feature likelihood is defined and it is applied to every sub-block, so that the tampering-area map can be obtained to complete the detection. The simulation results show that the algorithm has strong robustness and can locate the image’s tampered region more accurately.

魏金巧, 王英. 基于后验概率和滤色阵列特性的图像篡改检测算法[J]. 计算机科学与应用, 2017, 7(9): 850-857. https://doi.org/10.12677/CSA.2017.79097


[1] 周琳娜, 王东明. 数字图像取证技术[M]. 北京: 北京邮电大学出版社, 2008: 1-6.
[2] Bianchi, T. and Piva, A. (2012) Image Forgery Localization via Block-Grained Analysis of JPEG Artifacts. IEEE Transactions on Information Forensics and Security, 7, 1003-1017.
[3] Swaminathan, A., Wu, M. and Liu, K.R. (2007) Nonintrusive Component Forensics of Visual Sensors Using Output Images. IEEE Transactions on Information Forensics and Security, 2, 91-106.
[4] Swaminathan, A., Wu, M. and Liu, K.J.R. (2008) Digital Image Forensics via Intrinsic Fingerprints. IEEE Transactions on Information Forensics and Security, 3, 101-117.
[5] Popescu, A.C. and Farid, H. (2005) Exposing Digital Forgeries in Color Filter Array Interpolated Images. IEEE Transactions on Signal Processing, 53, 3948-3959.
[6] Vinoth, S., et al. (2013) Neural Network Modeling of Color Array Filter for Digital Forgery Detection Using Kernel LDA. Procedia Technology, 10, 498-504.
[7] 彭双, 彭圆圆, 肖长燕. 基于CFA插值的图像篡改检测算法[J]. 传感器与微系统, 2015, 32(6): 0141-0144.
[8] 张雯, 李学明. 改进的基于颜色滤波陈列特性的篡改检测[J]. 计算机工程与应用, 2009, 45(6): 176-179.
[9] Ng, T.T., Chang, S.F. and Sun, Q. (2004) Blind Detection of Photomontage Using Higher Order Statistics. Proceeding of the 2004 International Symposium on Circuits and Systems, Columbia, 23-26 May 2004, 688-691.
[10] Ng, T.T. and Chang, S.F. (2004) A Model for Image Splicing. Proceedings on 2004 International Conference on Image Processing, Singapore, 24-27 October 2004, 1169-1172.
[11] Ferrara, P., Bianchi, T., Rosa, D.A., et al. (2012) Image Forgery Localization via Fine-Grained Analysis of CFA Artifacts. IEEE Transactions on Information Forensics and Security, 7, 1566-1577.