CSA  >> Vol. 7 No. 9 (September 2017)

    基于后验概率和滤色阵列特性的图像篡改检测算法
    An Image Tampering Detection Algorithm Based on the Posterior Probability and Color Filter Array Artifacts

  • 全文下载: PDF(1562KB) HTML   XML   PP.850-857   DOI: 10.12677/CSA.2017.79097  
  • 下载量: 80  浏览量: 112  

作者:  

魏金巧,王 英:青岛大学电子信息学院,山东 青岛

关键词:
后验概率滤色阵列特性高斯混合模型似然率图像篡改检测Posterior Probability Color Filter Array Artifacts Gaussian Mixture Model Likelihood Ratio Image Tempering Detection

摘要:

针对图像采集过程中插值算法对图像三原色之间所引入的插值特性,论文提出一种基于后验概率和滤色阵列特性的图像篡改检测算法。首先提取待测图像绿色通道分量,引入二维预测滤波构建预测误差函数;然后分块提取特征,分析原始与篡改图像所提特征的直方图特性,从而建立特征的高斯混合统计模型,并借助EM算法估计模型参数;计算子块特征作为原始块的后验概率,定义似然率并应用到每个子块中,从而可得到篡改区域映射图,完成本次检测。仿真结果表明,该算法具有较强的鲁棒性,能够对图像篡改区域进行较准确地定位。

Focused on the artifacts between the three primaries of an image introduced by the interpolation algorithm during its acquisition process, an image tampering detection algorithm based on the posterior probability and the color filter array artifacts is proposed. Firstly, the green channel component of the image is extracted, and the two-dimensional predictive filter is used to construct the predictive error function. Then the histograms’ character of original and tampering images is analyzed, and then the Gaussian mixture statistical model is established. EM algorithm is applied to estimate the model parameters. Then the posterior probability of each sub-block as an original block is calculated, and the feature likelihood is defined and it is applied to every sub-block, so that the tampering-area map can be obtained to complete the detection. The simulation results show that the algorithm has strong robustness and can locate the image’s tampered region more accurately.

文章引用:
魏金巧, 王英. 基于后验概率和滤色阵列特性的图像篡改检测算法[J]. 计算机科学与应用, 2017, 7(9): 850-857. https://doi.org/10.12677/CSA.2017.79097

参考文献

[1] 周琳娜, 王东明. 数字图像取证技术[M]. 北京: 北京邮电大学出版社, 2008: 1-6.
[2] Bianchi, T. and Piva, A. (2012) Image Forgery Localization via Block-Grained Analysis of JPEG Artifacts. IEEE Transactions on Information Forensics and Security, 7, 1003-1017.
https://doi.org/10.1109/TIFS.2012.2187516
[3] Swaminathan, A., Wu, M. and Liu, K.R. (2007) Nonintrusive Component Forensics of Visual Sensors Using Output Images. IEEE Transactions on Information Forensics and Security, 2, 91-106.
https://doi.org/10.1109/TIFS.2006.890307
[4] Swaminathan, A., Wu, M. and Liu, K.J.R. (2008) Digital Image Forensics via Intrinsic Fingerprints. IEEE Transactions on Information Forensics and Security, 3, 101-117.
https://doi.org/10.1109/TIFS.2007.916010
[5] Popescu, A.C. and Farid, H. (2005) Exposing Digital Forgeries in Color Filter Array Interpolated Images. IEEE Transactions on Signal Processing, 53, 3948-3959.
https://doi.org/10.1109/TSP.2005.855406
[6] Vinoth, S., et al. (2013) Neural Network Modeling of Color Array Filter for Digital Forgery Detection Using Kernel LDA. Procedia Technology, 10, 498-504.
[7] 彭双, 彭圆圆, 肖长燕. 基于CFA插值的图像篡改检测算法[J]. 传感器与微系统, 2015, 32(6): 0141-0144.
[8] 张雯, 李学明. 改进的基于颜色滤波陈列特性的篡改检测[J]. 计算机工程与应用, 2009, 45(6): 176-179.
[9] Ng, T.T., Chang, S.F. and Sun, Q. (2004) Blind Detection of Photomontage Using Higher Order Statistics. Proceeding of the 2004 International Symposium on Circuits and Systems, Columbia, 23-26 May 2004, 688-691.
[10] Ng, T.T. and Chang, S.F. (2004) A Model for Image Splicing. Proceedings on 2004 International Conference on Image Processing, Singapore, 24-27 October 2004, 1169-1172.
[11] Ferrara, P., Bianchi, T., Rosa, D.A., et al. (2012) Image Forgery Localization via Fine-Grained Analysis of CFA Artifacts. IEEE Transactions on Information Forensics and Security, 7, 1566-1577.
https://doi.org/10.1109/TIFS.2012.2202227