MP  >> Vol. 7 No. 5 (September 2017)

    形成最小单位电荷的一种可能的物理机制
    Report on a Possible Physical Mechanism of Minimum Unit Charge Forming

  • 全文下载: PDF(705KB) HTML   XML   PP.183-189   DOI: 10.12677/MP.2017.75021  
  • 下载量: 123  浏览量: 636  

作者:  

夏同生:北京航空航天大学,北京

关键词:
Kerr黑洞准模微扰单位电荷Kerr Black Hole Quasi Normal Mode Perturbation Charge Unit

摘要:

黑洞引力场微扰方面的研究是一个相当有意义且活跃的领域。这篇文章涉及处理了普朗克尺度下的最小Kerr黑洞。让人惊喜的是,我们发现对最小Kerr黑洞的微扰给出了一个对应于e/3电荷的准模。我们并给出了对这一结论的说明与解释。

Study on the perturbation of the gravitational field of black holes is quite an interesting and active research field. This paper deals with the minimum Kerr black hole in the Planck scale. Surprisingly, we find that the perturbation gives a quasi normal mode corresponding to a charge unit of e/3. Works are done to make things self-consistent too.

文章引用:
夏同生. 形成最小单位电荷的一种可能的物理机制[J]. 现代物理, 2017, 7(5): 183-189. https://doi.org/10.12677/MP.2017.75021

参考文献

[1] Gralla, S., Porfyriadis, A. and Warburton, N. (2015) Particle on the Innermost Stable Circular Orbit of a Rapidly Spinning Black Hole. Physical Review D, 92, 064029-064043.
https://doi.org/10.1103/PhysRevD.92.064029
[2] Harms, E., Lukes Gerakopoulos, G., Bernuzzi, S. and Nagar, A. (2016) Asymptotic Gravitational Wave Fluxes from a Spinning Particle in Circular Equatorial Orbits around a Rotating Black Hole. Physical Review D, 93, 044015-044036.
https://doi.org/10.1103/PhysRevD.93.044015
[3] Casals, M. and Ottewill, A. (2015) High-Order Tail in Schwarzschild Spacetime. Physical Review D, 92, 124055-124091.
https://doi.org/10.1103/PhysRevD.92.124055
[4] Regge, T. and Wheeler, J. (1957) Stability of a Schwarzschild Singularity. Physical Review, 108, 1063-1069.
https://doi.org/10.1103/PhysRev.108.1063
[5] Zerilli, F. (1970) Effective Potential for Even-Parity Regge-Wheeler Gravitational Perturbation Equations. Physical Review Letters, 24, 737-738.
https://doi.org/10.1103/PhysRevLett.24.737
[6] Sasaki, M. and Nakamura, T. (1981) The Regge-Wheeler Equation with Sources for both Even and Odd Parity Perturbations of the Schwarzschild Geometry. Physics Letters A, 87, 85-88.
https://doi.org/10.1016/0375-9601(81)90568-5
[7] York, J. (1983) Dynamical Origin of Black-Hole Radiance. Physical Review D, 28, 2929-2945.
https://doi.org/10.1103/PhysRevD.28.2929
[8] Hod, S. (1998) Bohr’s Correspondence Principle and the Area Spectrum of Quantum Black Holes. Physical Review Letters, 81, 4293-4296.
https://doi.org/10.1103/PhysRevLett.81.4293
[9] Bekenstein, J. (1974) The Quantum Mass Spectrum of the Kerr Black Hole. Lettere al Nuovo Cimento, 11, 467-470.
https://doi.org/10.1007/BF02762768
[10] Nollert, H. (1993) Quasinormal Modes of Schwarzschild Black Holes: The Determination of Quasinormal Frequencies with Very Large Imaginary Parts. Physical Review D, 47, 5253-5258.
https://doi.org/10.1103/PhysRevD.47.5253
[11] Andersson, N. (1993) On the Asymptotic Distribution of Quasinormal-Mode Frequencies for Schwarzschild Black Holes. Classical and Quantum Gravity, 10, L61-L67.
https://doi.org/10.1088/0264-9381/10/6/001
[12] Hawking, S. (1975) Particle Creation by Black Holes. Communications in Mathematical Physics, 43, 199-220.
https://doi.org/10.1007/BF02345020
[13] Dreyer, O. (2003) Quasinormal Modes, the Area Spectrum, and Black Hole Entropy. Physical Review Letters, 90, 081301-081304.
https://doi.org/10.1103/PhysRevLett.90.081301
[14] Teukolsky, S. (1973) Perturbations of a Rotating Black Hole. I. Fundamental Equations for Gravitational, Electromagnetic, and Neutrino-Field Perturbations. The Astrophysical Journal, 185, 635-648.
https://doi.org/10.1086/152444
[15] Leaver, E. (1986) Solutions to a Generalized Spheroidal Wave Equation: Teukolsky’s Equations in General Relativity, and the Two-Center Problem in Molecular Quantum Mechanics. Journal of Mathematical Physics, 27, 1238-1265.
https://doi.org/10.1063/1.527130
[16] Hartle, J. and Wilkins, D. (1974) Analytic Properties of the Teukolsky Equation. Communications in Mathematical Physics, 38, 47-63.
https://doi.org/10.1007/BF01651548
[17] Newman, E. and Penrose, R. (1962) An Approach to Gravitational Radiation by a Method of Spin Coefficients. Journal of Mathematical Physics, 3, 566-578.
https://doi.org/10.1063/1.1724257
[18] Yang, H., Zimmerman, A., Zenginoglu, A., Zhang, F., Berti, E. and Chen, Y. (2013) Quasinormal Modes of Nearly Extremal Kerr Spacetimes: Spectrum Bifurcation and Power-Law Ringdown. Physical Review D, 88, 044047-044069.
https://doi.org/10.1103/PhysRevD.88.044047
[19] Berti, E., Cardoso, V., Kokkotas, K. and Onozawa, H. (2003) Highly Damped Quasinormal Modes of Kerr Black Holes. Physical Review D, 68, 124018-124032.
https://doi.org/10.1103/PhysRevD.68.124018
[20] Oguchi, T. (1970) Eigenvalues of Spheroidal Wave Functions and Their Branch Points for Complex Values of Propagation Constants. Radio Science, 5, 1207-1214.
https://doi.org/10.1029/RS005i008p01207
[21] Pani, P., Berti, E. and Gualtieri, L. (2013) Scalar, Electromagnetic, and Gravitational Perturbations of Kerr-Newman Black Holes in the Slow-Rotation Limit. Physical Review D, 88, 064048-064062.
https://doi.org/10.1103/PhysRevD.88.064048
[22] Detweiler, S. (1978) Black Holes and Gravitational Waves. I-Circular Orbits about a Rotating Hole. The Astrophysical Journal, 225, 687-693.
https://doi.org/10.1086/156529
[23] Detweiler, S. and Ipser, J. (1973) The Stability of Scalar Perturbations of a Kerr-Metric Black Hole. The Astrophysical Journal, 185, 675-684.
https://doi.org/10.1086/152446
[24] Keshet, U. and Hod, S. (2007) Analytic Study of Rotating Black-Hole Quasinormal Modes. Physical Review D, 76, 061501-061505(R).
https://doi.org/10.1103/PhysRevD.76.061501
[25] Kao, H. and Tomino, D. (2008) Quasinormal Modes of Kerr Black Holes in Four and Higher Dimensions. Physical Review D, 77, 127503-127506.
https://doi.org/10.1103/PhysRevD.77.127503
[26] Berti, E., Cardoso, V. and Yoshida, S. (2004) Highly Damped Quasinormal Modes of Kerr Black Holes: A Complete Numerical Investigation. Physical Review D, 69, 124018-124022.
https://doi.org/10.1103/PhysRevD.69.124018
[27] Fiziev, P.P. (2010) Classes of Exact Solutions to the Teukolsky Master Equation. Classical and Quantum Gravity, 27, 135001-135030.
https://doi.org/10.1088/0264-9381/27/13/135001
[28] Motl, L. (2003) An Analytical Computation of Asymptotic Schwarzschild Quasinormal Frequencies. Advances in Theoretical and Mathematical Physics, 6, 1135-1162.
https://doi.org/10.4310/ATMP.2002.v6.n6.a3
[29] Motl, L. and Neitzke, A. (2003) Asymptotic Black Hole Quasinormal Frequencies. Advances in Theoretical and Mathematical Physics, 7, 307-330.
https://doi.org/10.4310/ATMP.2003.v7.n2.a4
[30] Hawking, S. (1971) Gravitationally Collapsed Objects of Very Low Mass. MNRAS, 152, 75-78.
https://doi.org/10.1093/mnras/152.1.75
[31] Bondi, H. (1957) Negative Mass in General Relativity. Reviews of Modern Physics, 29, 423-428.
https://doi.org/10.1103/RevModPhys.29.423
[32] Khamehchi, M.A., Hossain, K., Mossman, M.E., Zhang, Y., Busch, Th., Forbes, M. and Engels, P. (2017) Negative-Mass Hydrodynamics in a Spin-Orbit-Coupled Bose-Einstein Condensate. Physical Review Letters, 118, 155301-155306.
https://doi.org/10.1103/PhysRevLett.118.155301