MS  >> Vol. 7 No. 6 (September 2017)

    镁合金表面超疏水复合膜层的制备及性能研究
    Preparation and Properties of Super-Hydrophobic Composite Film on Magnesium Alloy Surface

  • 全文下载: PDF(882KB) HTML   XML   PP.621-627   DOI: 10.12677/MS.2017.76082  
  • 下载量: 648  浏览量: 1,579  

作者:  

刘 翔,陈宁宁,王燕华:中国海洋大学化学化工学院,海洋化学理论与工程技术教育部重点实验室,山东 青岛

关键词:
聚苯乙烯石墨烯超疏水复合膜腐蚀保护Polystyrene Graphene Super-Hydrophobic Composite Film Corrosion Protection

摘要:

本文通过将石墨烯/聚苯乙烯共混溶液涂覆在微弧氧化处理后的AZ91镁合金表面,得到了一种超疏水复合膜层。采用了扫描电子显微镜(SEM)、接触角测试仪、傅里叶红外分析(FTIR)进行表征,研究了超疏水复合膜层的表面形貌、润湿性能和化学组成。采用极化曲线和电化学阻抗方法评价了膜层的耐蚀性能。与未加修饰的镁合金试样比较,超疏水复合膜层的腐蚀电流密度降低了4个数量级,提高了镁合金的耐蚀性能。

A super-hydrophobic composite film was prepared by coating the graphene/polystyrene blends on the surface of magnesium alloy after treating by micro arc oxidation method. The scanning electron microscopy (SEM), contact angle tester and Fourier transform infrared spectroscopy (FTIR) were used to characterize the surface morphology, wettability and chemical composition of the super-hydrophobic composite film. In addition, the polarization curves and the electrochemical impedance spectroscopy were also employed to evaluate the anticorrosive property of the coatings. Compared with the unmodified magnesium alloy, the corrosion current density of the super-hydrophobic composite film is reduced by four orders of magnitude, which greatly improved the corrosion resistance of magnesium alloy.

文章引用:
刘翔, 陈宁宁, 王燕华. 镁合金表面超疏水复合膜层的制备及性能研究[J]. 材料科学, 2017, 7(6): 621-627. https://doi.org/10.12677/MS.2017.76082

参考文献

[1] Lorimer, G.W. and Robson, J. (2008) Review on Research and Development of Magnesium Alloys. Acta Metallurgica Sinica, 21, 313-328.
https://doi.org/10.1016/S1006-7191(08)60054-X
[2] Polmear, I.J. (1994) Magnesium Alloys and Applications. Materials Science and Technology, 10, 1-16.
https://doi.org/10.1179/mst.1994.10.1.1
[3] 朱绒霞. 服役环境下镁合金材料腐蚀的研究[J]. 装备环境工程, 2006, 3(2): 50-52.
[4] 董凯辉, 宋影伟, 单大勇,等. 镁合金微弧氧化技术的研究进展[J]. 表面技术, 2015, 44(3): 74-80.
[5] Krishna, L.R., Poshal, G., Jyothirmayi, A., et al. (2013) Compositionally Modulated CGDS + MAO Du-plex Coatings for Corrosion Protection of AZ91 Magnesium Alloy. Journal of Alloys & Compounds, 578, 355-361.
https://doi.org/10.1016/j.jallcom.2013.06.036
[6] Tang, Y., Zhao, X., Jiang, K., et al. (2010) The Influences of Duty Cycle on the Bonding Strength of AZ31B Magnesium Alloy by Microarc Oxidation Treatment. Surface & Coatings Technology, 205, 1789-1792.
https://doi.org/10.1016/j.surfcoat.2010.05.016
[7] 翟世伟, 李晓燕, 王梦龙, 等. 基于铸铝微弧氧化构筑超疏水表面及工艺优化[J]. 材料保护, 2016, 49(4): 36-39.
[8] 李杰, 刘玉德, 黄雅婷, 等. 基于微/纳二元结构镁合金超疏水膜层的制备[J]. 中国有色金属学报, 2014, 24(7): 1707-1713.
[9] 龚佑宁, 于连江, 潘春旭. 石墨烯及其在金属防腐中应用的研究进展[J]. 中国舰船研究, 2016, 11(1): 80-88.
[10] Lin, G., Ding, J. and Yu, H. (2016) Re-search in Graphene-Based Anticorrosion Coatings. Progress in Chemistry -Beijing-, 28, 737-743.
[11] 陈霞, 翟翠萍. 乳液聚合法制备纳米金/聚苯乙烯复合粒子[J]. 化学研究, 2014, 25(1): 20-23.
[12] 庞月红, 李朝霞, 沈晓芳, 等. 静电纺丝技术制备聚苯乙烯/石墨烯复合纳米纤维[J]. 化学通报, 2012, 75(11): 1040-1043.
[13] Hao, L., Chen, Z., Wang, R., et al. (2012) A Non-Aqueous Electrodeposition Process for Fabrication of Superhydrophobic Surface with Hierarchical Micro/Nano Structure. Applied Surface Science, 258, 8970-8973.
https://doi.org/10.1016/j.apsusc.2012.05.130