OJTT  >> Vol. 6 No. 5 (September 2017)

    孔道压浆缺陷对预应力混凝土梁耐久性的影响研究
    Study on Durability of Prestressed Concrete Beams with Influence of Grouting Defects

  • 全文下载: PDF(1689KB) HTML   XML   PP.254-268   DOI: 10.12677/OJTT.2017.65032  
  • 下载量: 549  浏览量: 1,210  

作者:  

李旺林:湖北省产品质量监督检验研究院,湖北 武汉;
吴克宝,操 抗:武汉华中科大土木工程检测中心,湖北 武汉;
罗 辉,李 彤:华中科技大学土木工程与力学学院,湖北 武汉

关键词:
压浆缺陷预应力梁缩尺试验数值分析耐久性Grouting Defect Prestressed Concrete Beam Scaled Test Numerical Analysis Durability

摘要:

对具有孔道压浆缺陷的预应力混凝土缩尺梁构件进行氯盐溶液浸泡处理,而后对其进行了静载试验。探讨了压浆缺陷分布位置及侵蚀时间对梁试件的跨中挠度变形、跨中混凝土应变及裂缝发展的影响,并对预应力筋锈蚀情况进行了分析。此外,为探究空浆部分预应力筋断裂对构件承载力的影响,以试验中部分工况为基础,采用数值计算方法对足尺箱梁进行了仿真计算,研究了不同位置预应力筋断裂对构件极限抗弯承载力的影响。

Scaled prestressed concrete beams with duct grouting defects were immersed in chloride solu-tion, and then static loading tests are carried out on these beams. With different position of grouting defect and soaking time as variable, an attempt is made to know the laws of mid-span deflection, strain and cracking development. In the meanwhile, the corrosion of prestressed reinforcement is analyzed. In addition, in order to investigate the effect of the prestressed ten-don rupture on the bearing capacity of the voids, then based on some of the working conditions, numerical analysis of full-scale component is made to know the effect of fracture of prestressing tendon on capacity.

文章引用:
李旺林, 吴克宝, 罗辉, 李彤, 操抗. 孔道压浆缺陷对预应力混凝土梁耐久性的影响研究[J]. 交通技术, 2017, 6(5): 254-268. https://doi.org/10.12677/OJTT.2017.65032

参考文献

[1] 彭建新, 邵旭东. CO2排放、气候变化及其对混凝土结构开始腐蚀时间和时变可靠度评估的[J]. 公路交通科技, 2009, 26(10): 76-81.
[2] Stewart, M.G., Wang, X. and Nguyen, M.N. (2011) Climate Change Impact and Risks of Concrete Infrastructure Deterioration. Engineering Structures, 33, 1326-1337.
https://doi.org/10.1016/j.engstruct.2011.01.010
[3] Hakkinen, T. (1994) Influence of High Slag Content on the Basic Mechanical Properties and Carbonation of Concrete. Technical Research Centre of Finland.
[4] 徐善华. 混凝土结构退化模型与耐久性评估[D]: [博士学位论文]. 西安: 西安建筑科技大学, 2003.
[5] Weyers, R.E. (1998) Service Life Model for Concrete Structures in Chloride Laden Environments. Materials Journal, 95, 445-453.
[6] Collepardi, M., Marcialis, A. and Turriziani, R. (1972) Penetration of Chloride Ions into Cement Pastes and Concretes. Journal of the American Ceramic Society, 55, 534-535.
https://doi.org/10.1111/j.1151-2916.1972.tb13424.x
[7] 王胜年, 潘德强, 卫淑珊, 等. 海工混凝土的长期耐久性研究[J]. 水运工程, 2001(8): 20-22.
[8] Czarnecki, A.A. and Nowak, A.S. (2008) Time-Variant Reliability Profiles for Steel Girder Bridges. Structural Safety, 30, 49-64.
https://doi.org/10.1016/j.strusafe.2006.05.002
[9] Val, D.V. and Stewart, M.G. (2003) Life-Cycle Cost Analysis of Reinforced Concrete Structures in Marine Environments. Structural Safety, 25, 343-362.
https://doi.org/10.1016/S0167-4730(03)00014-6
[10] 刘西拉, 苗澍柯. 混凝土结构中的钢筋腐蚀及其耐久性计算[J]. 土木工程学报, 1990, 23(4): 69-78.