OJNS  >> Vol. 5 No. 4 (September 2017)

    氩纳米晶体薄膜热膨胀性质的分子动力学研究
    Molecular Dynamics Study on the Thermal Expansion of Argon Nanocrystal Films

  • 全文下载: PDF(398KB) HTML   XML   PP.410-416   DOI: 10.12677/OJNS.2017.54056  
  • 下载量: 698  浏览量: 2,605  

作者:  

唐 婧:湖南师范大学物理与信息科学学院,湖南 长沙;
黄建平:湖南师范大学信息科学与工程学院,湖南 长沙

关键词:
纳米晶体薄膜热膨胀分子动力学氩晶体Nanocrystal Film Thermal Expansion Molecular Dynamics Argon Crystal

摘要:

运用分子动力学方法,计算了不同温度下各种厚度的氩纳米晶体薄膜和块体氩晶体的晶格常数,据此计算它们的热膨胀系数,并对它们的晶格常数和热膨胀系数进行比较。计算与分析的结果表明:氩晶体纳米薄膜的晶格常数小于块体氩晶体的晶格常数,且随薄膜厚度减小而减小;氩晶体纳米薄膜的热膨胀系数大于块体氩晶体的热膨胀系数,且随薄膜厚度减小而增加。

The lattice constants and thermal expansion coefficients of argon bulk crystal and nanocrystal films with different thicknesses under different temperatures are calculated with the aid of molecular dynamics, and their thermal expansion coefficients under different temperatures are obtained. By comparing the lattice constants and expansion coefficients between argon bulk crystal and nanocrystal films with different thicknesses, it is found that the lattice constant of nanocrystal film is smaller than that of argon bulk crystal and decreases as the thickness decreases, but the thermal expansion coefficient of nanocrystal film is larger than that of argon bulk crystal and increases as the thickness decreases.

文章引用:
唐婧, 黄建平. 氩纳米晶体薄膜热膨胀性质的分子动力学研究[J]. 自然科学, 2017, 5(4): 410-416. https://doi.org/10.12677/OJNS.2017.54056

参考文献

[1] Yang, X. and Wu, D. (2010) The Melting Behaviors of the Nb(110) Nanofilm: A Molecular Dynamics Study. Applied Surface Science, 256, 3197-3203.
https://doi.org/10.1016/j.apsusc.2009.12.005
[2] Adiga, S., Adiga, V.P., Carpick, R.W., et al. (2011) Vibrational Properties and Specific Heat of Ultrananocrystalline Diamond: Molecular Dynamics Simulations. The Journal of Physical Chemistry C, 115, 21691-21699.
https://doi.org/10.1021/jp207424m
[3] Ju, S. and Liang, X. (2012) An Atomic Level Study on the Out-of-Plane Thermal Conductivity of Polycrystalline Argon Nanofilm. Chinese Science Bulletin, 57, 294-298.
https://doi.org/10.1007/s11434-011-4787-2
[4] 黄建平, 杨程, 胡诗一. 硅纳米晶体薄膜热膨胀性质的分子动力学研究[J]. 原子与分子物理学报, 2014(31): 639-642.
[5] 鲍华. 固体氩的晶格热导率的非简谐晶格动力学计算[J]. 物理学报, 2013, 62(18): 1-7.
[6] Plimpton, S. (1995) Fast Parallel Algorithms for Short-Range Molecular Dynamics. Journal of Computational Physics, 117, 1-19.
https://doi.org/10.1006/jcph.1995.1039
[7] Guo, J. and Zhao, Y. (2007) The Size-Dependent Bending Elastic Properties of Nanobeams with Surface Effects. Nanotechnology, 18, 295701-295706.
https://doi.org/10.1088/0957-4484/18/29/295701
[8] Grüneisen, E. (1912) Theorie Des Festen Zustandes Einatomiger Element. [Theory of the Solid State of Monatomic Elements.] Annalen der Physik, 12, 257-306.
https://doi.org/10.1002/andp.19123441202
[9] Siegel, S. and Quimby, S.L. (1938) The Thermal Expansion of Crystalline Sodium Between 80 K and 290 K. Physical Review, 54, 76-78.
https://doi.org/10.1103/PhysRev.54.76
[10] Yu, J., Tang, Z., Zhang, F., et al. (2005) Investigation of A Microcalorimeter for Thin-Film Heat Capacity Measurement. Chinese Physics Letters, 22, 2429-2432.
https://doi.org/10.1088/0256-307X/22/9/080