ECSB反应器对制药废水的处理效果研究
Study on Removal Efficiency of ECSB Systems for Pharmaceutical Wastewater
DOI: 10.12677/WPT.2017.54013, PDF, HTML, XML, 下载: 1,689  浏览: 3,557  科研立项经费支持
作者: 王红伟, 周 杰, 董 婵:南京科技职业学院生物与环境学院,江苏 南京
关键词: ECSB反应器溶解氧有机物ECSB Reactor Dissolved Oxygen Organic Matter
摘要: 目前我国制药行业高速发展,解决制药废水对环境的污染问题已迫在眉睫。微氧技术为微生物创造了独特的氧环境,氧化作用与还原作用同时发生,具有去除效率高、能耗低、剩余污泥量低等优点。本文利用外循环膨胀颗粒污泥床(ECSB)反应器探讨其对制药废水中主要污染物的去除效果。结果表明,ECSB系统去除的主要污染物为有机物,化学需氧量(COD)的平均去除率为95.2%。然而,该系统对氨氮和磷的去除效果并不理想,后续处理工艺可以选择好氧生物处理工艺以及深度处理工艺,最终保证出水的达标排放。
Abstract: At present, the pharmaceutical industry is developing rapidly. It is important to solve the envi-ronmental pollution caused by pharmaceutical wastewater. Micro-Aerobic technology created a special oxygen environment for microorganism. The processes of oxidation and reduction took place at the same time. It has many advantages, such as high removal, low energy consumption, little excess activated sludge. This paper investigated the pollutants removal of pharmaceutical wastewater using Expanded Cycle Sludge Blanket (ECSB) reactor. The results showed that the av-erage COD removal was 95.2%. However, the removal of ammonia and phosphorus was not signif-icant. We need other treatment systems to treat the outflow of ECSB system in order to discharge up to standard.
文章引用:王红伟, 周杰, 董婵. ECSB反应器对制药废水的处理效果研究[J]. 水污染及处理, 2017, 5(4): 103-108. https://doi.org/10.12677/WPT.2017.54013

参考文献

[1] 徐波. 制药废水处理的工程实例研究[J]. 中国新技术新产品, 2017(10): 90-91.
[2] 张政, 梁康, 韩慧慧, 等. 利用ABR-SBR组合反应器处理合成制药废水的研究[J]. 山东化工, 2017, 46(7): 195-199.
[3] 谭潇, 黄靓, 杨平, 等. 盐度对EGSB反应器的运行及厌氧颗粒污泥的影响[J]. 环境科学, 2017, 38(8): 3422-3428.
[4] 孙亚全, 董春娟, 耿炤宇. 两级EGSB反应器处理焦化废水的实验研究[J]. 环境工程学报, 2014, 8(8): 3294-3298.
[5] 董春娟, 吕炳南, 马立, 等. 采用微氧产甲烷技术降解水中的毒性物质[J]. 中国给水排水, 2003, 19(8): 19-22.
[6] 孙艳玲, 杜兵, 司亚安, 等. 城市污水水解–厌氧–微氧联合处理工艺[J]. 环境科学, 2000, 21(6): 77-79.
[7] 胡林林, 王建龙, 文湘华, 等. 低溶解氧条件下生物脱氮研究中的新现象[J]. 应用与环境生物学报, 2003, 9(4): 444-447.
[8] Meng, L.-W., Li, X.-K., Wang, S.-T., et al. (2017) The Long-Term Impact of Cefalexin on Organic Substrate Degradation and Microbial Community Structure in EGSB System. Chemosphere, 184, 215-223.
https://doi.org/10.1016/j.chemosphere.2017.05.171
[9] Peng, D.C., Bernet, N., Delgenes, J.P., et al. (2001) Simultaneous Organic Carbon and Nitrogen Removal in an SBR Controlled at Low Dissolved Oxygen Concentration. Journal of Chemical Technology and Biotechnology, 76, 553-558.
https://doi.org/10.1002/jctb.419
[10] Sperandio, M., Urbain, V., Audic, J.M., et al. (1999) Use of Carbon Dioxide Evolution Rate for Determining Heterotrophic Yield and Characterizing Denitrifying Biomass. Water Science & Technology, 39, 139-146.
[11] Zitomer, D.H. (1998) Stoichiometry of Combined Aerobic and Methanogenic COD Transformation. Water Research, 32, 669-676.
https://doi.org/10.1016/S0043-1354(97)00258-3
[12] Speece, R.E. (1996) Anaerobic Biotechnology for Industrial Wastewaters. Archae Press, Nashville, TN.
[13] Zitomer, D.H. (1998) Feasibility and Benefits of Methanogenesis under Oxygen-Limited Conditions. Waste Management, 18, 107-116.
https://doi.org/10.1016/S0956-053X(98)00008-7