运筹与模糊学  >> Vol. 1 No. 1 (August 2011)

基于模糊信息粒化的风电场短期风速预测
Short-Term Wind Speed Prediction in Wind Farm Based on Theory of Fuzzy Information Granulation

DOI: 10.12677/orf.2011.11003, PDF, HTML, 下载: 2,739  浏览: 10,111  国家自然科学基金支持

作者: 易军, 李太福, 苏盈盈

关键词: 风速预测模糊信息粒化时间序列
Wind Speed; Prediction; Theory of Fuzzy Information Granulation; Time Series

摘要: 风速的观测值往往存在大量冗余信息,导致计算量庞大并影响预测的有效性。本文提出一种基于模糊信息粒化的风电场短期风速预测方法,将原始风速观测时序数据进行模糊粒化处理,粒化后的数据既能反映风速变化特征,又能大量减少冗余,在此基础上运用支持向量机进行短期风速预测。利用武隆风电场提供的风速数据进行试验表明,该方法能够有效预测未来短期风速变化空间。
Abstract: There is often a lot of redundant information in observed values of wind speed to result in large computation and affect the predictive validity. A short-term wind speed prediction method based on theory of fuzzy information granulation is proposed to granulate wind speed data of time series. Granulated data can not only reflect the characteristics of wind but also reduce redundant information. Support vector machine can be used to forecast short-term wind speed. A group of wind speed data is provided by Wulong wind farms in Chongqing. The test result shows that this method can predict the short-term wind speed space.

文章引用: 易军, 李太福, 苏盈盈. 基于模糊信息粒化的风电场短期风速预测[J]. 运筹与模糊学, 2011, 1(1): 11-15. http://dx.doi.org/10.12677/orf.2011.11003

参考文献

[1] 吴国旸, 肖洋, 翁莎莎. 风电场短期风速预测探讨[J]. 吉林电力, 2005, 33(6): 21-27.
[2] 陈友, 王晛, 李渝曾. 一种用于短期电价预测的分时段时间序列传递函数模型[J]. 电力系统保护与控制, 2008, 36(16): 1-4.
[3] A. Malmberg, U. Holst, and J. Holst. Forecasting near-surface ocean winds with Kalaman filter techniques. Ocean Engineering, 2005, 32(3-4): 273-291.
[4] 丁明, 张立军, 吴义纯. 基于时间序列分析的风电场风速预测模型[J]. 电力自动化设备, 2005, 25(8): 32-34.
[5] 郭伟伟, 刘家学, 马云龙等. 基于改进RBF 网络算法的电力系统短期负荷预测[J]. 电力系统保护与控制, 2008, 36(23): 45-48.
[6] M. Monfared, H. Rastegar, and H. M. Kojabadi. A new stategy for wind speed forecasting using artificial intelligent methods. Renewable Energy, 2009, 34(3): 845-848.
[7] M. C. Alexiadis, P. S. Dokopoulos, H. S. Sahsamanoglou, et al. Short-term forecasting of wind speed and relatived electrical power. Solar Energy, 1998, 63(1): 61-68.
[8] L. A. Zadeh. Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic. Fuzzy sets and systems, 1997, 90(2): 111-127.
[9] C.-C. Chang, C.-J. Lin. LIBSVM—A library for support vector machines[URL]. http://www.csie.ntu.edu.tw/~cjlin/libsvm/, 2011-1-8.