改性水生植物枯落物对水体六价铬的吸附
Adsorption of Hexavalent Chromium in Water by Modified Aquatic Plants
DOI: 10.12677/AEP.2017.75052, PDF, HTML, XML, 下载: 1,689  浏览: 3,607 
作者: 杨登越, 吴辛睿, 刘 涛, 王 博:辽宁石油化工大学生态环境研究院,辽宁 抚顺
关键词: 改性水生植物枯落物吸附六价铬The Modified of Modified Aquatic Plants Adsorption Hexavalent Chromium
摘要: 本文以人工湿地常用水生植物芦苇、香蒲和茭草的秋季枯落物废弃物为原料,利用化学改性方法制备高效吸附水中Cr(VI)的改性水生植物枯落物吸附剂。通过控制Cr(VI)初始浓度、吸附时间、Cr(VI)溶液pH,研究改性水生植物枯落物的吸附性能以及吸附机制。结果表明,改性水生植物枯落物对Cr(VI)的吸附过程是一个先快速后缓慢的过程,吸附8 h基本达到平衡。准二级动力学吸附方程能更好的描述改性水生植物枯落物对Cr(VI)的吸附过程,Langmuir等温线对改性水生植物枯落物的拟合效果更高。改性芦苇枯落物、香蒲枯落物、茭草枯落物的饱和吸附量Qm分别为20.168、19.5957、22.0419 mg∙g−1。pH对改性水生植物枯落物对Cr(VI)的吸附影响明显,pH越小越不利于改性水生植物枯落物对Cr(VI)的吸附。
Abstract: In this paper, the aquatic plant litter adsorbents of Cr (VI) in water were prepared by chemical modification method using the litter wastes of Phragmites communis, Cattail and Zizania latiflora in artificial wetlands. The adsorption performance and adsorption mechanism of the modified litter of modified aquatic plants were studied by controlling the initial concentration of Cr (VI), the adsorption time and the pH of Cr (VI) solution. The results showed that the adsorption process of Cr (VI) was a rapid and slow process, and the adsorption was 8 h. The results showed that the adsorption process of Cr (VI) in the early stage of the adsorption process was rapid and adsorption after 8 hours to reach a balance. The quasi-second-order kinetic adsorption equation can better describe the adsorption process of Cr (VI) of the modified aquatic litter, and the Langmuir isotherm is more suitable for the modified litter. The saturated adsorption capacities of modified reed, cattail and Zizania caduciflora were 20.168, 19.5957 and 22.0419 mg∙g−1, respectively. The effect of pH on the adsorption of Cr (VI) by the modified aquatic plants was obvious, and the lower the pH, the less the adsorption of Cr (VI) on the modified aquatic plants.
文章引用:杨登越, 吴辛睿, 刘涛, 王博. 改性水生植物枯落物对水体六价铬的吸附[J]. 环境保护前沿, 2017, 7(5): 390-396. https://doi.org/10.12677/AEP.2017.75052

参考文献

[1] 曹晓强, 颜炳琪, 王倩, 等. 硅酸镁锂的有机改性及对Cr(VI)的吸附特性[J]. 高等学校化学学报, 2017, 38(2): 173-181.
[2] 秦泽敏, 董黎明, 刘平, 等. 零价纳米铁吸附去除水中六价铬的研究[J]. 中国环境科学, 2014(12): 3106-3111.
[3] 杨剑梅, 高慧, 李庭, 等. 稻草秸秆对水中六价铬去除效果的研究[J]. 环境科学与技术, 2009, 32(10): 78-82.
[4] 高悦, 许醒, 高宝玉, 等. 生物质阴离子树脂的合成、表征及吸附性能[J]. 化工学报, 2012, 63(1): 301-306.
[5] Orlando, U.S., Baes, A.U., Nishijima, W., et al. (2002) A New Procedure to Produce Lignocellulosic Anion Exchangers from Agricultural Waste Materials. Bioresource Technology, 83, 195-198.
https://doi.org/10.1016/S0960-8524(01)00220-6
[6] 裘凯栋, 黎维彬. 水溶液中六价铬在碳纳米管上的吸附[J]. 物理化学学报, 2006, 22(12): 1542-1546.
[7] Tan, X., Liu, Y., Zeng, G., et al. (2015) Application of Biochar for the Removal of Pollutants from Aqueous Solutions. Chemosphere, 125, 70-85.
https://doi.org/10.1016/j.chemosphere.2014.12.058
[8] Hong, R.Y., Fu, H.P., Di, G.Q., et al. (2008) Facile Route to γ-Fe2O3/SiO2 Nanocomposite Used as A Precursor of Magnetic Fluid. Materials Chemistry and Physics, 108, 132-141.
https://doi.org/10.1016/j.matchemphys.2007.09.014
[9] Greenleaf, J.E., Cumbal, L., Staina, I., et al. (2003) Abiotic As (III) Oxidation by Hydrated Fe (III) Oxide (HFO) Microparticles in a Plug Flow Columnar Configuration. Process Safety and Environmental Protection, 81, 87-98.
https://doi.org/10.1205/095758203321832552
[10] Ji, L., Chen, W., Duan, L., et al. (2009) Mechanisms for Strong Adsorption of Tetracycline to Carbon Nanotubes: A Comparative Study Using Activated Carbon and Graphite as Adsorbents. Environmental Science & Technology, 43, 2322-2327.
https://doi.org/10.1021/es803268b
[11] Dąbrowski, A., Podkościelny, P., Hubicki, Z., et al. (2005) Adsorption of Phenolic Compounds by Activated Carbon—A Critical Review. Chemosphere, 58, 1049-1070.
https://doi.org/10.1016/j.chemosphere.2004.09.067
[12] Zhou, J., Song, H., Ma, L., et al. (2011) Magnetite/Graphene Nanosheet Composites: Interfacial Interaction and Its Impact on the Durable High-Rate Performance in Lithium-Ion Batteries. RSC Advances, 1, 782-791.
https://doi.org/10.1039/c1ra00402f
[13] Von Oepen, B., Kördel, W. and Klein, W. (1991) Sorption of Nonpolar and Polar Compounds to Soils: Processes, Measurements and Experience with the Applicability of the Modified OECD-Guideline 106. Chemosphere, 22, 285-304.
https://doi.org/10.1016/0045-6535(91)90318-8
[14] Peng, H., Pan, B., Wu, M., et al. (2012) Adsorption of Ofloxacin and Norfloxacin on Carbon Nanotubes: Hydrophobicity-and Structure-Controlled Process. Journal of Hazardous Materials, 233, 89-96.
https://doi.org/10.1016/j.jhazmat.2012.06.058
[15] Peng, H., Feng, S., Zhang, X., et al. (2012) Adsorption of Norfloxacin onto Titanium Oxide: Effect of Drug Carrier and Dissolved Humic Acid. Science of the Total Environment, 438, 66-71.
https://doi.org/10.1016/j.scitotenv.2012.08.045
[16] Bastami, T.R. and Entezari, M.H. (2012) Activated Carbon from Carrot Dross Combined with Magnetite Nanoparticles for the Efficient Removal of P-Nitrophenol from Aqueous Solution. Chemical Engineering Journal, 210, 510-519.
https://doi.org/10.1016/j.cej.2012.08.011