基于动态模糊神经网络模型预测水稻受砷胁迫下叶绿素的含量变化
Prediction of Chlorophyll Content in Rice under Arsenic Stress Based on Dynamic Fuzzy Neural Network Model
DOI: 10.12677/AEP.2017.75054, PDF, HTML, XML, 下载: 1,508  浏览: 2,427  国家自然科学基金支持
作者: 王 博, 王 平, 刘志明:东北师范大学地理科学学院,吉林 长春
关键词: 砷污染胁迫水稻叶绿素动态模糊神经网络模型Arsenic Contamination Rice Chlorophyll Dynamic Fuzzy Neural Network
摘要: 为探讨利用动态模糊神经网络模型评价水稻受重金属砷污染胁迫状况,研究了水稻农田在自然生长环境下重金属砷污染对水稻叶片中叶绿素含量的影响,并做出对叶绿素含量变化敏感的植被指数与叶绿素之间的相关性分析,通过多元逐步回归找到与叶绿素含量变化敏感的植被指数NDVI、MNDVI、MTCI、MSR、GNDVI作为动态模糊神经网络的输入参数,水稻叶片中叶绿素含量值作为模型的输出参数建立能够判断水稻污染等级的动态模糊神经网络模型。结果表明,预测的叶绿素含量值与实测的叶绿素含量值拟合度高(R2 = 0.905)。说明可以用动态模糊神经网络模型预测农田的污染等级情况,为大面积监测水稻农田污染提供借鉴的依据。
Abstract: The aim of this paper is to assess the ability of dynamic fuzzy neural network model in evaluating the pollution status of rice field under the stress of heavy metal arsenic pollution. Heavy mental arsenic pollution would change the chlorophyll content in leaves of rice, so the correlation between chlorophyll content and vegetation index was analyzed. By stepwise regression, NDVI, MNDVI, MTCI, MSR, GNDVI were found which were very sensitive to the change of chlorophyll content. Then a dynamic fuzzy neural network was constructed where the five indices were used as input parameters and the chlorophyll content of rice as the output parameter. The results reflected that the predicted chlorophyll content is in good agreement with the measured chlorophyll content (R2 = 0.905). It was indicated that the chlorophyll content of rice under the stress of heavy metal arsenic pollution could be predicted by dynamic fuzzy neural network model, which would provide a reference for large area monitoring of heavy metal pollution in rice field.
文章引用:王博, 王平, 刘志明. 基于动态模糊神经网络模型预测水稻受砷胁迫下叶绿素的含量变化[J]. 环境保护前沿, 2017, 7(5): 404-413. https://doi.org/10.12677/AEP.2017.75054

参考文献

[1] 胡省英, 冉伟彦. 土壤环境中砷元素的生态效应[J]. 物探与化探, 2006, 30(1): 83-91.
[2] Singh, N., Kumar, D., Raisuddin, S., et al. (2008) Genotoxic Effects of Arsenic: Prevention by Functional Food-Jaggery. Cancer Letters, 268, 325-330.
[3] Mateos-Naranjo, E., Andrades-Moreno, L. and Redondo-Gomez, S. (2012) Tolerance to and Accumulation of Arsenic in the Cordgrass Spartina Densiflora Brongn. Bioresource Technology, 104, 187-194.
[4] Pillai, A., Sunita, G. and Gupta, V.K. (2000) A New System for the Spectrophotometric Determination of Arsenic in Environmental and Biological Samples. Analytica China Acta, 408, 111-115.
[5] 叶海涛. 台湾地区的乌脚病[J]. 地方病通报, 1994, 9(1): 72-73.
[6] 李婷, 刘湘南, 刘美玲. 水稻重金属污染胁迫光谱分析模型的区域应用与验证[J]. 农业工程学报, 2012, 28(12): 176-182.
[7] 王芬, 彭国照, 蒋锦刚, 等. 基于双层神经网络与GIS可视化的土壤重金属污染评价[J]. 农业工程学报, 2010, 26(4): 162-168.
[8] 杨娟, 王昌全, 李冰, 等. 基于BP神经网络的城市边缘带土壤重金属污染预测——以成都平原土壤Cd为例[J].土壤学报, 2007, 44(3): 430-436.
[9] Er, M.J., Wu, S.Q. and Gao, Y. (2003) Dynamic Fuzzy Neural Networks: Architecture, Algorithms and Applications. McGraw-Hill, Singapore.
[10] Wu, S.Q. and Er, M.J. (2000) Dynamic Fuzzy Neural Networks: A Novel Approach to Function Approximation. IEEE Transactions On Systems Man And Cybernetics Part B, 30, 358-364.
[11] Wu, S.Q., Er, M.J. and Gao, Y. (2001) A Fast Approach for Automatic Generation of Fuzzy Rules by Generalized Dynamic Neural Networks. IEEE Transactions on Fuzzy Systems, 9, 578-594.
https://doi.org/10.1109/91.940970
[12] Er, M.J. and Wu, S.Q. (2002) A Fast Learning Algorithm for Parsimonious Fuzzy Neural Systems. Fuzzy Sets and Systems, 126, 337-351.
https://doi.org/10.1016/S0165-0114(01)00034-3
[13] Er, M.J., Wu, S.Q., Lu, J. and Toh, H.L. (2002) Face Recognition Using Radial Basis Function (RBF) Neural Networks. IEEE Transactions on Neural Networks, 13, 697-710.
https://doi.org/10.1109/TNN.2002.1000134
[14] Er, M.J., Low, C.B., Nah, K.H., et al. (2002) Real-Time Implementation of a Dynamic Fuzzy Neural Networks Controller for SCARA. Microprocessors and Microsystems, 26, 449-461.
https://doi.org/10.1016/S0141-9331(02)00069-8
[15] Gao, Y. and Er, M.J. (2003) Online Adaptive Fuzzy Neural Identification and Control of a Class of MIMO Nonlinear Systems. IEEE Transactions on Fuzzy Systems, 11, 462-477.
https://doi.org/10.1109/TFUZZ.2003.814833
[16] Gao, Y. and Er, M.J. (2003) Robust Adaptive Control of Robot Manipulators Using Generalized Fuzzy Neural Networks. IEEE Transactions on Industrial Electronics, 50, 620-628.
https://doi.org/10.1109/TIE.2003.812454
[17] Er, M.J., Li, Z., Cai, H. and Chen, Q. (2005) Adaptive Noise Cancellation Using Enhanced Dynamic Fuzzy Neural Networks. IEEE Transactions on Fuzzy Systems, 13, 331-341.
https://doi.org/10.1109/TFUZZ.2004.841733
[18] Borge, N.H. and Mortensen, J.V. (2002) Deriving Green Crop Area Index and Canopy Chlorophyll Density of Winter Wheat Rom Spectral Reflectance Data. Remote Sensing of Environment, 91, 45-47.
https://doi.org/10.1016/S0034-4257(01)00332-7
[19] 陈思宁, 刘新会, 侯娟, 等. 重金属锌胁迫的白菜叶片光谱响应研究[J]. 光谱学与光谱分析, 2007, 27(9): 1797-1801.
[20] 任红艳. 宝山矿区农田土壤–水稻系统重金属污染的遥感监测[D]: [博士学位论文]. 南京: 南京农业大学, 2008.
[21] Amiri, R., Beringer, J. and Isaac, P. (2011) Narrowband Spectral Indices for the Estimation of Chlorophyll along a Precipitation Gradient. 2011 3rd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), Lisbon, 6-9 June 2011, 4 p.
[22] 孟宪玺, 李生智. 吉林省土壤元素背景值研究[M]. 北京: 科学出版社, 1995: 64-69.
[23] Wood, C.W., Reeves, D.W. and Himelrick, D.G. (1993) Relationships between Chlorophyll Meter Readings and Leaf Chlorophyll Concentration, N Status, and Crop Yield: A Review. Proceedings of the Agronomy Society of New Zealand, 23, 1-9.
[24] 史啸勇, 郁建桥. 微波消解–原子吸收光度法测定土壤中铜锌铅镉镍铬镍[J]. 环境监测管理与技术, 2003, 15(1): 32-33.
[25] 伍世虔, 徐军. 动态模糊神经网络——设计与应用[M]. 北京: 清华大学出版社, 2008: 1-5.
[26] Gitelson, A.A. and Merzlyak, M.N. (1996) Signature Analysis of Leaf Reflectance Spectra: Algorithm Development for Remote Sensing. Journal of Plant Physiology, 148, 494-500.
https://doi.org/10.1016/S0176-1617(96)80284-7
[27] Sims, D.A. and Gamon, J.A. (2002) Relationships between Leaf Pigment Content and Spectral Reflectance across a Wide Range of Species, Leaf Structures and Developmental Stages. Remote Sensing of Environment, 81, 337-354.
https://doi.org/10.1016/S0034-4257(02)00010-X
[28] Dash, J. and Curran, P.J. (2004) The MERIS Terrestrial Chlorophyll Index. International Journal of Remote Sensing, 25, 5403-5413.
https://doi.org/10.1080/0143116042000274015
[29] Jordan, C.F. (1969) Derivation of Leaf Area Index from Quality of Light on the Forest Floor. Ecology, 50, 663-666.
https://doi.org/10.2307/1936256
[30] Gitelson, A.A., Kaufman, Y.J. and Merzlyak, M.N. (1997) Use of a Green Channel in Remote Sensing of Global Vegetation from EOS-MODIS. Remote Sensing of Environment, 58, 289-298.
https://doi.org/10.1016/S0034-4257(96)00072-7