应用数学进展  >> Vol. 6 No. 7 (October 2017)

基于SOM网络及关联规则的湖北省城市空气质量研究
Urban Air Quality Evaluation of Hubei Province Based on SOM Network and Association Rules

DOI: 10.12677/AAM.2017.67097, PDF, HTML, XML, 下载: 918  浏览: 2,925 

作者: 张贺, 王博:中国地质大学(武汉)数学与物理学院,湖北 武汉

关键词: SOM神经网络关联规则空气质量湖北省SOM Neural Network Association Rules Air Quality Hubei Province

摘要: 随着经济发展及人口增多,我们居住的城市陆续发生了各种环境问题。利用自组织竞争(SOM)神经网络研究湖北省城市环境空气质量,以PM2.5、PM10、SO2、CO、NO2、O3六个主要空气污染物作为指标,建立SOM网络模型,结果显示在空间分布上湖北省城市空气质量呈现从外围到中心降低的特征。采用数据挖掘中的关联规则,利用经典的Apriori算法挖掘主要空气污染物之间的关联关系,得到PM2.5、NO2、O3之间的强关联规则。
Abstract: With the development of economy and the increase of population, all kinds of environmental problems have taken place in our city. Firstly, taking PM2.5, PM10, SO2, CO, NO2, and O3 the six major air pollutants as indicators, self-organizing neural (SOM) network is used to study the urban air quality in Hubei province. The SOM neural network clustering model is established, and the results show that the air quality in Hubei province is reduced from the periphery to the center. Secondly, this paper uses the association rules in data mining and the classical Apriori algorithm to mine the correlation between PM2.5, NO2, and O3 the three major air pollutants, the strong association rules are found finally.

文章引用: 张贺, 王博. 基于SOM网络及关联规则的湖北省城市空气质量研究[J]. 应用数学进展, 2017, 6(7): 801-807. https://doi.org/10.12677/AAM.2017.67097

参考文献

[1] 环境保护部环境监测司. “十二五”环境监测工作手册[M]. 北京: 中国环境科学出版社, 2012: 300-301.
[2] 方晗. 稻谷干燥模型数学模拟与神经网络仿真[D]: [硕士学位论文]. 沈阳: 东北大学, 2004: 16-17.
[3] 王小川, 史峰. MATLAB神经网络30个案例分析[M]. 北京: 北京航空航天大学出版社, 2010: 159-169.
[4] Agrawal, R., Imielinski, T. and Swami, A. (1993) Mining Association Rules between Sets of Items in Large Databases. Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data, Washington, D.C., 25-28 May 1993, 207-216.
https://doi.org/10.1145/170035.170072
[5] 李雄飞, 董元方, 李军, 等. 数据挖掘与知识发现[M]. 北京: 高等教育出版社, 2010.
[6] 刘小珊, 罗文强, 李飞翱, 黄丽. 基于关联规则的滑坡演化阶段判识指标[J]. 地质科技情报, 2014, 33(2): 119-123.
[7] Chang, K.C.-C., He, B., Li, C.K., et al. (2004) Structured Database on the Web: Observations and Implications. SIGMOD Record, 33, 61-70.
https://doi.org/10.1145/1031570.1031584