新疆托克逊观测气温的均一性分析与订正
Homogeneity and Correction for Observation Air Temperature at Toksun Station in Xinjiang Province
DOI: 10.12677/CCRL.2017.65032, PDF, HTML, XML,  被引量 下载: 1,333  浏览: 3,250  国家科技经费支持
作者: 石继宏:新疆托克逊县气象局,新疆 托克逊;朱玉祥*:中国气象局气象干部培训学院,北京
关键词: 均一性迁站对比观测t-检验Homogeneity Transfer the Station Comparative Observation T-Test
摘要: 采用托克逊国家一般气象观测站新、旧站址2015年1~12月同期气温观测资料,进行了对比分析。发现新、旧站的气温存在显著差异,新站与旧站平均气温、平均最高气温、平均最低气温存在显著性差异的月份占到78%,表明迁站导致托克逊站的观测气温出现了非均一性。初步分析表明,地理环境、下垫面性质、城区的热岛效应是造成气温出现显著差异的主要原因。用一元线性回归方法,把新站的气温资料订正到旧站,可以得到较准确的代表当地气温真实变化特点的均一性气温资料。
Abstract: The corresponding air temperature data were contrastively analyzed between new and old ob-servation station at Toksun national general weather station. It was found that there was signifi-cance difference in air temperature between new and old station. 78 percent of months had sig-nificance difference in average, average maximum, average minimum air temperature between new and old station. Preliminary analysis showed that significance difference in air temperature resulted from the geographical environment, underlying surface properties and urban heat island effect. The air temperature data of new station were emended to old station by unitary linear regression analysis, which could get homogeneity air temperature data representing local air temperature change.
文章引用:石继宏, 朱玉祥. 新疆托克逊观测气温的均一性分析与订正[J]. 气候变化研究快报, 2017, 6(5): 288-296. https://doi.org/10.12677/CCRL.2017.65032

参考文献

[1] 肖子牛, 主编. 气候与气候变化基础知识[M]. 北京: 气象出版社, 2014.
[2] 朱玉祥, 翟建青, 苏布达. 第1章: 气候变化影响评估方法应用[M]//姜彤. 数据数据处理与分析. 北京: 气象出版社, 2013.
[3] 李庆祥. 气候资料均一性研究导论[M]. 北京: 气象出版社, 2011.
[4] 黄嘉佑. 气象统计分析与预报方法(第四版) [M]. 北京: 气象出版社, 2016.
[5] 丘平珠, 程爱珍, 黄理. 广西南宁自动气象站与人工气象站观测资料对比评估[J]. 广西气象, 2004, 25(2): 30-32.
[6] 袁云贵, 宋彦棠. 都匀市气象局迁站对比观测各气象要素差异分析[J]. 贵州气象, 2008, 32(2): 31-33.
[7] Alexandersson, H. and Moberg, A. (1997) Homogenization of Swedish Temperature Data, Part I: A homogeneity Test for Linear Trends. International Journal of Climatology, 17, 25-34.
https://doi.org/10.1002/(SICI)1097-0088(199701)17:1<25::AID-JOC103>3.0.CO;2-J
[8] Easterling, D.R. and Peterson, T.C. (1995) The Effect of Artificial Discontinuities on Recent Trends in Minimum and Maximum Temperatures. Atmospheric Research, 37, 19-26.
https://doi.org/10.1016/0169-8095(94)00064-K
[9] Li, Q.X., Liu, X.N., Zhang, H.Z., et al. (2004) Detecting and Adjusting on Temporal Inhomogeneity in Chinese Mean Surface Air Temperature Dataset EJ3. Advances in Atmospheric Sciences, 21, 260-268.
https://doi.org/10.1007/BF02915712
[10] Rhoades, D.A. and Salinger, M.J. (1993) Adjustment of Temperature and Rainfall Records for Site Changes. International Journal of Climatology, 13, 899-913.
https://doi.org/10.1002/joc.3370130807
[11] Vincent, L. (1998) A Technique for the Identification of Inhomogeneities in Canadian Temperature Series. Journal of Climate, 11, 1094-1104.
https://doi.org/10.1175/1520-0442(1998)011<1094:ATFTIO>2.0.CO;2
[12] Zhai, P.M. and Eskridge, R.E. (1996) Analyses of Inhomogeneities in Radiosonde Temperature and Humidity Time Series. Journal of Climate, 9, 884-894.
https://doi.org/10.1175/1520-0442(1996)009<0884:AOIIRT>2.0.CO;2