电场作用下液晶微流动数值计算程序编写与优化
The Written and Optimization of the Liquid Crystalline Micro Flow Simulation Program under the Electric Field Effect
DOI: 10.12677/CSA.2017.710110, PDF, HTML, XML, 下载: 1,436  浏览: 1,793  国家自然科学基金支持
作者: 林绿叶*, 刘春波, 王安标:河南工业大学机电学院,河南 郑州
关键词: 液晶引流效应MATLAB软件微流动程序优化串行计算Backflow Effect MATLAB Software Micro Flow Program Optimization Serial Computation
摘要: 本文是根据液晶引流效应,以小分子液晶Leslie-Ericksen理论为基础,建立了模拟电场作用下产生的液晶微流动基本控制方程组,并运用MATLAB软件辅助编程计算。为提高求解效率,针对程序时间、空间尺度小,循环次数较多的特点,重点对关键子程序段进行了优化,得到了串行计算(for循环)的最佳计算方法。此外,通过预先对所有的变量分配内存和优化单行程序的方法,有效减少了程序运行时间。执行结果显示:优化后的程序运行结果与原程序结果吻合,模拟计算1秒时长时,计算时间由原来约912.83个小时减少到约47.37个小时,计算效率提高近20倍。
Abstract: In this article, basic governing equations of the liquid crystalline micro flow under the electric field were established according to Lesile-Ericksen theory, and the programming and simulation process was assisted by MATLAB software. In order to improve the efficiency of the simulation, the optimization was done according to the characteristics of the program. Since the time and space scale was small, and the number of cycles was large, the key subprogram was optimized with serial computation. In addition, allocating memory for all variables in advance and optimization single program sentence were used to reduce the operating time. The results of optimal program are in accord with the primary programs. In the simulation process of one second, the computing time was reduced from about 912.83 hours to about 47.37 hours, and the calculating efficiency was improved nearly 20 times.
文章引用:林绿叶, 刘春波, 王安标. 电场作用下液晶微流动数值计算程序编写与优化[J]. 计算机科学与应用, 2017, 7(10): 974-983. https://doi.org/10.12677/CSA.2017.710110

参考文献

[1] 刘超. 激光光热驱动技术与微型光热驱动机构研究[D]: [博士学位论文]. 杭州: 浙江大学, 2010: 1-5.
[2] 陈冰芽, 刘莹, 胡敏, 等. 微执行器的研究与[J]. MEMS器件与技术, 2005(12): 561-565.
[3] 刘春波, 关炎芳, 辻知宏, 蝶野成臣. 电场作用向列相液晶指向矢与流动的耦合机理[J]. 应用力学学报, 2012, 29(3): 262-268.
[4] Mieda, Y. and Fukuyani, K. (2005) Two-Dimensional Micromanipulation Using Liquid Crystals. Applied Physics Letters, 86, 1-3.
[5] Sunarso, A., Tsuji, T. and Chono, S. (2010) GPU-Accelerated Molecular Dynamics Simulation for Study of Liquid Crystalline Flows. Journal of Computational Physics, 229, 5486-5497.
https://doi.org/10.1016/j.jcp.2010.03.047
[6] Chono, S. and Tsuji, T. (2009) Numerical Analysis of Characteristics of Micro Actuators Driven by Liquid Crystals. Chemical Engineering Science, 64, 4625-4631.
[7] 刘春波, 田勇, 等. 基于液晶引流效应的全新微流体驱动方式[J]. 机械工程学报, 2012, 48(6): 122-129.
[8] 郭春海, 谭俊杰. 一种新型主动微混合器及其流场的数值研究[J]. 计算力学学报, 2012, 29(5): 800-805.
[9] 栗雪娟, 欧阳洁, 蒋涛, 张小华. 模拟微可压粘弹性流体的WCCBS_SU方法[J]. 计算力学学报, 2011, 28(4): 591-595.
[10] 付一志, 焦群英. 薄壁细胞受微吸管与探针共同作用接触模型及数值模拟[J]. 计算力学学报, 2011, 28(2): 291-295.
[11] 刘春波, 陈大立, 辻知宏, 蝶野成臣. 基于液晶流效应的微流体驱动方式开发[J]. 机床与液压, 2012, 40(21): 8-33.
[12] 王安标, 刘春波. 连续方波电场作用下液晶引流驱动效果数值分析[J]. 应用力学学报, 2014, 31(4): 654-660.
[13] 于艳华, 等. 工程数值方法[M]. 第六版. 北京: 清华大学出版社, 2010.
[14] 唐洪浪. MATLAB程序优化的方法[J]. 洛阳师范学院学报, 2005(5): 66-68.