钢板电极处理亚甲基蓝模拟废水机理研究
Mechanism of Methylene Blue from Simulated Wastewater by Steel Plate Electrode
DOI: 10.12677/WPT.2017.54015, PDF, HTML, XML, 下载: 1,660  浏览: 4,138  科研立项经费支持
作者: 曾 伟, 王营茹, 周海涛, 沈 瑶:武汉工程大学化学与环境工程学院,湖北 武汉
关键词: 钢板电极亚甲基蓝降解机理Steel Plate Electrode Methylene Blue Degradation Mechanism
摘要: 采用钢板电极对亚甲基蓝(MB)模拟废水进行电化学处理,通过单因素条件试验,确定最佳工艺条件为:外加电压8 V,电解质(Na2SO4)浓度0.05 mol/L,极板间距1.5 cm,MB初始质量浓度300 mg/L,电解时间120 min。在此最佳条件下,MB去除率可达94.65%,TOC的去除率可达73.28%。通过GC-MS、IC分析,推测亚甲基蓝可能的降解途径:亚甲基蓝的C-N和C-S键被破坏,生成2-甲基-5,5-二苯基-4-甲硫基咪唑,随之氧化生成3-氨基-1,2-苯并异噻唑和酚类化合物,最终矿化为NO3、CI−、SO42-、CO2、H2O等小分子化合物。
Abstract: Electrochemical treatment of methylene blue (MB) simulated wastewater was carried out by steel plate electrode, and the single factor condition test was carried out. The optimum conditions were as follows: the applied voltage 8 V; the concentration of electrolyte 0.05 mol/L; the distance be-tween the plates 1.5 cm; the initial concentration of MB 300 mg/L; and electrolysis time 120 min. Under the optimum conditions, MB removal rate reached to 94.65% and the removal rate of TOC reached to 73.28%. The possible degradation pathways of methylene blue were analyzed by GC-MS and IC analysis. C-N and C-S bonds of methylene blue were destroyed to form 2-methyl-5,5-diphenyl-4-methylthioimidazole. And then oxidized to generate phenolic compounds and 3-amino-1,2-benzisothiazole, which was eventually transfered to NO3, CI−, SO42-, CO2, H2O and other small molecular compounds.
文章引用:曾伟, 王营茹, 周海涛, 沈瑶. 钢板电极处理亚甲基蓝模拟废水机理研究[J]. 水污染及处理, 2017, 5(4): 119-128. https://doi.org/10.12677/WPT.2017.54015

参考文献

[1] 章丹, 徐斌, 朱培娟, 等. TiO2光催化降解亚甲基蓝机理的研究[J]. 华东师范大学学报自然科学版, 2013, 2013(5): 35-42.
[2] Yang, M., Liu, X., Chen, J., et al. (2014) Photocatalytic and Electrochemical Degradation of Methylene Blue by Titanium Dioxide. Chinese Science Bulletin, 59, 1964-1967.
https://doi.org/10.1007/s11434-014-0267-9
[3] 李慧媛, 高丁, 史江红, 等. Ti/RuO2-IrO2电极电化学方法降解溶液中TBBPA及其降解机理探究[J]. 环境科学学报, 2017, 37(2): 642-650.
[4] 王营茹, 陆晓华, 林莉. 阴极材料对模拟土壤淋洗液中六氯苯电化学降解的影响[J]. 环境科学与技术, 2011, 34(9): 92-94.
[5] 黄芳敏. 介质阻挡放电低温等离子体降解亚甲基蓝溶液及其体系气液相中活性粒子化学行为分析[D]: [博士学位论文]. 广州: 华南理工大学, 2013.
[6] 张轶, 丛燕青, 孙培德. 电絮凝处理甲基橙废水的实验及动力学模型[J]. 化工学报, 2009, 60(9): 2339-2345.
[7] 蔡成翔, 莫德清. 甲基橙废水电絮凝处理研究[J]. 百色学院学报, 2007, 20(3): 71-74.
[8] 孔茜. 甲基橙废水的电絮凝处理研究[J]. 现代商贸工业, 2009, 21(6): 287-288.
[9] Huang, F., Chen, L., Wang, H., et al. (2010) Analysis of the Degradation Mechanism of Methylene Blue by Atmospheric Pressure Die-lectric Barrier Discharge Plasma. Chemical Engineering Journal, 162, 250-256.
https://doi.org/10.1016/j.cej.2010.05.041
[10] 马文姣, 戴启洲, 王家德, 等. 声电氧化处理亚甲基蓝废水的研究[J]. 中国环境科学, 2012, 32(5): 855-862.
[11] Wang, Q., Tian, S. and Ning, P. (2014) Degradation Mechanism of Methylene Blue in a Heterogeneous Fenton-like Reaction Catalyzed by Ferrocene. Industrial & Engineering Chemistry Research, 53, 643-649.
https://doi.org/10.1021/ie403402q
[12] 庞雅宁, 赵国华, 刘磊, 等. 金刚石膜电极电化学氧化提高废水可生化性的研究[J]. 中国环境科学, 2009, 29(12): 1255-1259.