氧化铝包覆量对锰酸锂正极材料电化学性能的影响
Effect on Electrochemical Performance of Different Ratio of Al2O3 Coating LiMn2O4 Cathode Material
DOI: 10.12677/MS.2017.77086, PDF, HTML, XML,  被引量 下载: 1,854  浏览: 3,360  科研立项经费支持
作者: 刘国壮:广西卓能新能源科技有限公司,广西 钦州;赖飞燕, 杨 辉, 黄有国, 王红强, 李庆余:广西低碳能源材料重点实验室,广西师范大学,广西 桂林
关键词: 锰酸锂氧化铝涂层不同包覆量正极材料电化学性能LiMn2O4 Al2O3 Coating Different Ratio of Coating Cathode Materials Electrochemical Performance
摘要: 针对锰酸锂正极材料存在循环性能差的问题,以九水硝酸铝(Al(NO3)3∙9H2O)和尖晶石锰酸锂(LiMn2O4)为原料,采用溶胶–凝胶法制备氧化铝包覆锰酸锂正极材料,研究氧化铝包覆量(氧化铝与锰酸锂的质量比)对锰酸锂正极材料的结构及其电化学性能的影响。采用XRD和SEM等手段研究合成材料的晶体结构和微观形貌;通过循环充放电测试和循环伏安法等方法研究其电化学性能。XRD和SEM结果表明:氧化铝的包覆并没有改变锰酸锂的晶体结构,只是包覆在锰酸锂的表面。电化学性能测试结果表明,当氧化铝包覆量为1.0%时,材料具有较好的循环性能,1 C条件下,循环200周容量保持率为96.96%,锰酸锂为52.78%。
Abstract: In order to improve the cycle performance of LiMn2O4 cathode materials, we synthesize Al2O3 coating LiMn2O4 cathode materials by sol-gel method using Al (NO3)3•9H2O and LiMn2O4 as starting materials. Effects on structure and electrochemical performance of Al2O3 coating LiMn2O4 cathode materials at different ratio have been researched. The crystal structure and morphology of mate-rials were characterized using X-ray diffraction (XRD) and scanning electron microscope (SEM); And the electrochemical performance was tested by cyclic voltammetry and cycling experiment. XRD and SEM results show that the coating is only on the surface of LiMn2O4 and it does not affect crystal structure of LiMn2O4. Electrochemical tests show that 1% Al2O3coating sample has an excellent electrochemical performance; the capacity retention is 96.96% at 1 C rate after 200 cycles when capacity retention of the uncoated LiMn2O4 is 52.78%.
文章引用:刘国壮, 赖飞燕, 杨辉, 黄有国, 王红强, 李庆余. 氧化铝包覆量对锰酸锂正极材料电化学性能的影响[J]. 材料科学, 2017, 7(7): 648-654. https://doi.org/10.12677/MS.2017.77086

参考文献

[1] Xu, G.J., Liu, Z.H., Zhang, C.J., et al. (2015) Stratgies for Improving the Cyclability and Thermo-Stability of LiMn2O4-Based Batteries at Elevated. Journal of Materials Chemistry A, 3, 4092-4123.
https://doi.org/10.1039/C4TA06264G
[2] Guan, D.S., Jeevarajan, J.A. and Wang, Y. (2011) Enhanced Cyclea-bility of LiMn2O4 Cathodes by Atomic Layer Deposition of Nanosized-Thin Al2O3 Coatings. Nanoscale, 3, 1465-1469.
https://doi.org/10.1039/c0nr00939c
[3] Han, C.G., Zhu, C.Y., Stiao, G., et al. (2015) Improved Electrochemical Properties of LiMn2O4 with the Bi and La Codoping for Lithium-Ion Batteries. RSC Advances, 5, 73315-73322.
https://doi.org/10.1039/C5RA13005K
[4] Zhan, D., Liang, Y., Cui, P., et al. (2015) Al-Doped LiMn2O4 Single Crystalline Nanorods with Enhaenced Elevated-Temperature Electrochemical Performance via a Template-Engaged Method as a Cathode Material for Lithiumion Batteries. RSC Advances, 5, 6372-6377.
https://doi.org/10.1039/C4RA13339K
[5] Gnanraj, J.S., Pol, V.G., Gedanken, A., et al. (2003) Improving the High-Temperature Performance of LiMn2O4 Spinel Electrodes by Coating the Active Msaa with MgO via a Sono-chemical Method. Electrochemistry Comunicationg, 5, 940-945.
https://doi.org/10.1016/j.elecom.2003.08.012
[6] TU, J., Zhao, X.B., Xie. J., et al. (2007) Enhanced Low Voltage Cycling Stability of LiMn2O4 Cathode by ZnO Coating for Lithium Ion Battries. Journal of Alloys and Compounds, 432, 313-317.
https://doi.org/10.1016/j.jallcom.2006.06.016
[7] Cui, Y.L., Wu, C., Wei, T., et al. (2011) Electrochemical Per-formance of Spinel LiMn2O4 Modified by Al Doped and Al2O3 Coated. Hemistry, 74, 742-749.
[8] Tu, J., Zhao, X.B., Cao, G.S., Zhuang, D.G., et al. (2006) Enhanced Cycling Stability of LiMn2O4 by Surface Modification with Melting Impregnation Method. Electrochimica Acta, 51, 6456-6462.
https://doi.org/10.1016/j.electacta.2006.04.031
[9] Zhou M.H., Zhu, Y.H., Li, J., et al. (2014) Electrochemical Performance of Al2O3 Pre-Coated Spinel LiMn2O4. Materials Science and Engineering of Powder Metallurgy, 6, 962-971.
[10] Lai, F.Y., Zhang, X.H., Wang, H.Q., et al. (2016) Three-Dimension Hierarchical Al2O3 Nanosheets Wrapped LiMn2O4 with Enhanced Cycling Stability as Cathode Material for Lithium Ion Batteries. ACS Applied Mate-rials & Interfaces, 8, 21656-21665.
https://doi.org/10.1021/acsami.6b05640
[11] Sung, C.J. and Han, Y.K. (2013) How Do Li Atoms Pass through the Al2O3 Coating Layer during Lithiation in Li-ion Batteries? The Journal of Physical Chemistry Letters, 4, 2681-2685.
https://doi.org/10.1021/jz401231e
[12] Sun, Y.K., Lee, M.J. and Yoon, C.S. (2012) The Role of AlF3 Coatings in Improving Electrochemical Cycling of Li-Enriched Nickel-Manganese Oxide Electrodes for Li-Ion Batteries. Advanced Materials, 24, 1192-1196.
https://doi.org/10.1002/adma.201104106