超声辅助磷钨酸催化制备纳米纤维素及其表征
Preparation and Characterization of Nanocrystalline Cellulose by Using Sonication Combination with Phosphotungstic Acid
DOI: 10.12677/HJCET.2017.76034, PDF, HTML, XML, 下载: 1,747  浏览: 3,097  国家自然科学基金支持
作者: 尚倩倩, 刘承果:中国林业科学研究院林产化学工业研究所,江苏 南京;江苏省生物质能源与材料重点实验室,江苏 南京;胡立红, 胡 云, 周永红:中国林业科学研究院林产化学工业研究所,江苏 南京
关键词: 微晶纤维素超声磷钨酸纳米纤维素Microcrystalline Cellulose Sonication Phosphotungstic Acid Nanocrystalline Cellulose
摘要: 在超声作用下,以磷钨酸为催化剂水解微晶纤维素,高效快速的制备纳米纤维素(NCC)。超声功率为250 W及磷钨酸浓度为75%的情况下,室温下超声15 min,NCC产率约为84%。采用透射电子显微镜、X射线衍射仪和傅里叶变换红外光谱仪对NCC的形貌、晶型结构及光谱性质进行分析。结果表明:超声辅助磷钨酸催化制备的NCC呈棒状结构,直径分布在19.6~94.0 nm,长度分布在112.4~639.7 nm,晶型结构仍属于纤维素I型,结晶度为82.9%,NCC仍然具有纤维素的基本化学结构。
Abstract: A fast and effective method was used for the synthesis of nanocrystalline cellulose (NCC) from microcrystalline cellulose (MCC) by combination of sonication and phosphotungstic acid catalyst. The yield of NCC is about 84% under the reaction condition of phosphotungstic acid concentration of 75%, sonication power of 250 W and 15 min reaction time. The morphological, crystal structure and spectrum properties of NCC were characterized using Transmission electron microscopy (TEM), X-ray diffracmeter (XRD) and Fourier transform infrared spectrometer (FTIR), respectively. The results indicated that rod-like NCC with the size of 19.6~94.0 nm in width and 112.4~639.7 nm in length was obtained. The XRD result confirmed that the NCC is cellulose type I model with the crystallinity of about 82.9%. The results of FTIR analysis showed that the basic chemical structure of cellulose is maintained.
文章引用:尚倩倩, 刘承果, 胡立红, 胡云, 周永红. 超声辅助磷钨酸催化制备纳米纤维素及其表征[J]. 化学工程与技术, 2017, 7(6): 241-248. https://doi.org/10.12677/HJCET.2017.76034

参考文献

[1] Brinchi, L., Cotana, F., Fortunati, E. and Kenny, J.M. (2013) Production of Nanocrystalline Cellulose from Lignocellulosic Biomass: Technology and Applications. Carbohydrate Polymers, 94, 154-169.
https://doi.org/10.1016/j.carbpol.2013.01.033
[2] Abitbol, T., Rivkin, A. and Cao, Y.F. (2016) Yuval Nevo EldhoAbraham, Tal Ben-Shalom, Shaul Lapidot, Oded Shoseyov. Nanocellulose, a Tiny Fiber with Huge Applications. Current Opinion in Biotechnology, 39, 76-88.
https://doi.org/10.1016/j.copbio.2016.01.002
[3] Qiao, C.D., Chen, G.X., Zhang, J.L. and Yao, J.S. (2016) Structure and Rheological Properties of Cellulose Nanocrystals Suspension. Food Hydrocolloids, 55, 19-25.
https://doi.org/10.1016/j.foodhyd.2015.11.005
[4] 曹俊霞, 刘春丽, 廖莉玲. Keggin型磷钨酸盐的制备、表征及其光催化性能[J]. 吉林大学学报(理学版), 2013, 51(5): 944-948.
[5] Li, X.T., Jiang, Y.J., Wang, L.L., Meng, L.Q., Wang, W. and Mu, X.D. (2012) Effective Low-Temperature Hydrolysis of Cellulose Catalyzed by Concentrated H3PW12O40 under Microwave Irradiation. RSC Advance, 2, 6921-6925.
[6] Li, W., Yue, J.Q. and Liu, S.X. (2012) Preparation of Nanocrystalline Cellulose via Ultrasound and Its Reinforcement Capability for Poly (Vinyl Alcohol) Composites. Ultrasonics Sonochemistry, 19, 479-485.
https://doi.org/10.1016/j.ultsonch.2011.11.007
[7] Liu, Y.F., Wang, H.S., Yu, G., Yu, Q.X., Li, B. and Mu, X.D. (2014) A Novel Approach for the Preparation of Nanocrystalline Cellulose by Using Phosphotungstic Acid. Carbohydrate Polymers, 110, 415-422.
https://doi.org/10.1016/j.carbpol.2014.04.040
[8] Hamid, S.B.A., Zain, S.K., Das, R. and Centi, G. (2016) Synergic Effect of Tungstophosphoric Acid and Sonication for Rapid Synthesis of Crystalline Nanocellulose. Carbohydrate Polymers, 138, 349-355.
https://doi.org/10.1016/j.carbpol.2015.10.023
[9] Chen, W.S., Li, Q., Wang, Y.C., Yi, X., Zeng, J., Yu, H.P., Liu, Y.X. and Li, J. (2014) Comparative Study of Aerogels Obtained from Differently Prepared Nanocellulose Fibers. ChemSusChem, 7, 154-161.
https://doi.org/10.1002/cssc.201300950