洞庭湖湿地系统氮磷时空分布特征及环境效应
Spatial-Temporal Distribution Characteristics and Environmental Effects of N and P in Wetland System of Dongting Lake
DOI: 10.12677/AG.2017.75071, PDF, HTML, XML, 下载: 1,293  浏览: 2,041  国家自然科学基金支持
作者: 周念清, 赵姗, 李丹:同济大学水利工程系,上海;刘晓群:湖南省洞庭湖水利工程管理局,湖南 长沙
关键词: 西洞庭湖演替带氮磷时空分布特征环境效应West Dongting Lake Succession Zones Nitrogen-Phosphorus Spatial-Temporal Distribution Characteristics Environmental Effects
摘要: 湖泊水体中氮磷超标是引起富营养化问题的重要因素,研究湿地系统地下水中氮磷的时空分布特征对于解决湖泊富营养化问题具有重要意义。本文以西洞庭湿地为研究对象,在澧水和沅水入湖口湿地进行了为期一年的地表水和地下水环境监测,探讨了西洞庭湿地演替带氮磷时空分布特征及其环境效应。研究结果表明:西洞庭湿地演替带水体中不同形态氮和磷的时空分布均呈现出非均一性特点,以农业为主的澧水演替带地下水中氮磷浓度普遍高于非农业区的沅水演替带。氮磷在水体中相伴而生,且水体中磷酸盐浓度与三氮浓度( 、 和 )存在显著的线性正相关关系。在不同季节演替带存在地表水和地下水的交替补给作用,地水体中氮磷浓度超标会影响地下水环境质量,甚至危害饮用水安全。
Abstract: Excessive nitrogen (N) and phosphorus (P) are the key elements to cause the eutrophication problem in the lake. Therefore studying the spatial and temporal distribution characteristics of nitrogen and phosphorus in the groundwater of wetland system has the vital significance to solve the eutrophication problem. In this paper, the West Dongting Lake was taken as the research object, and the surface water and groundwater environmental monitoring were made at two repre-sentative reaches of Dongting Lake, within the riparian zones of the Li River and Yuan River. Ulti-mately, the spatial and temporal distribution characteristics of nitrogen and phosphorus and its environmental effects in the west Dongting wetland succession zones were studied. The research results showed that the spatial-temporal distribution of N and P in Dongting Lake is heterogeneous, with the concentrations of nitrogen and phosphorus in agricultural Li succession zones higher than that of non-agricultural Yuan succession zones. The existence of nitrogen and phosphorus is accompanied in water body, and the concentrations of   significantly correlated with those of N species ( ,  and  ).There exists the alternate replenishment effect of surface water and groundwater in succession with the season. The over-standard concentrations of nitrogen and phosphorus have some contaminated effect on groundwater quality, further endangering the safety of drinking water.
文章引用:周念清, 赵姗, 李丹, 刘晓群. 洞庭湖湿地系统氮磷时空分布特征及环境效应[J]. 地球科学前沿, 2017, 7(5): 708-716. https://doi.org/10.12677/AG.2017.75071

参考文献

[1] Davidson, N.C. (2014) How Much Wetland Has the World Lost? Long-Term and Recent Trends in Global Wetland Area. Marine and Freshwater Research, 65, 934-941.
[2] Mitsch, W.J. and Gosselink, J.G. (2007) Wetlands. John Wiley and Sons, New York.
[3] 崔保山, 杨志峰. 湿地生态环境需水量研究[J]. 环境科学学报, 2002, 22(2): 219-224.
[4] Zhou, N.Q., Zhao, S. and Shen, X.P. (2014) Nitrogen Cycle in the Hyporheic Zone of Natural Wetlands. Chinese Science Bulletin, 9, 2945-2956.
[5] Dahl, T.E. (2006) Status and Trends of Wetlands in the Conterminous United States 1998 to 2004. U.S. Department of the Interior, Fish and Wildlife Service, Washington, DC.
[6] Dahl, T.E. (1990) Wetlands Losses in the United States, 1780’s to 1980’s. Report to the Congress (No. PB-91- 169284/ XAB). National Wetlands Inventory, St. Petersburg.
[7] 张明祥, 严承高, 王建春, 等. 中国湿地资源的退化及其原因分析[J]. 林业资源管理, 2001(3): 23-26.
[8] 马经安, 李红清. 浅谈国内外江河湖库水体富营养化状况[J]. 长江流域资源与环境, 2002, 11(6): 575-578.
[9] 王培合, 张霞, 徐瑶, 等. 湿地在哭泣国人当自省[J]. 湿地科学与管理, 2007, 3(2): 56-58.
[10] 郑建初, 常志州, 陈留根, 朱普平, 盛婧. 水葫芦治理太湖流域水体氮磷污染的可行性研究[J]. 江苏农业科学, 2008(3): 247-250.
[11] 李旭东, 李广贺, 张旭, 何小娟, 张荣社. 沸石床处理农田暴雨径流氮磷中试研究[J]. 环境污染治理技术与设备, 2003,4(9): 22-26.
[12] 张维理, 冀宏杰, Kolbe, H., 徐爱国. 中国农业面源污染形势估计及控制对策II欧美国家农业面源污染状况及控制[J]. 中国农业科学, 2004, 37(7): 1018-1025.
[13] 胡光伟, 毛德华, 李正最, 等. 60年来洞庭湖区进出湖径流特征分析[J]. 地理科学, 2014, 34(1): 89-96.
[14] 周念清, 赵露, 沈新平. 基于Copula函数的洞庭湖流域水沙丰枯遭遇频率分析[J]. 地理科学, 2014, 34(2): 242-248.
[15] Chang, J., Li, J., Lu, D., et al. (2010) The Hydrological Effect between Jingjiang River and Dongting Lake during the Initial Period of Three Gorges Project Operation. Journal of Geographical Sciences, 20, 771-786.
https://doi.org/10.1007/s11442-010-0810-9
[16] Hu, C., Deng, Z., Xie, Y., et al. (2015) The Risk Assessment of Sediment Heavy Metal Pollution in the East Dongting Lake Wetland. Journal of Chemistry, 2015, Article ID: 835487, 8 p.
https://doi.org/10.1155/2015/835487
[17] Liang, J., Liu, J., Yuan, X., et al. (2015) Spatial and Temporal Variation of Heavy Metal Risk and Source in Sediments of Dongting Lake Wetland, Mid-South China. Journal of Environmental Science and Health Part A—Toxic/Hazardous Substances & Environmental Engineering, 50, 100-108.
https://doi.org/10.1080/10934529.2015.964636
[18] 秦迪岚, 罗岳平, 黄哲, 等. 洞庭湖水环境污染状况与来源分析[J]. 环境科学与技术, 2012, 35(8): 193-198.
[19] 张光贵. 洞庭湖水环境健康风险评价[J]. 湿地科学与管理, 2013(4): 26-29.
[20] Dodds, W. and Smith, V.H. (2016) Nitrogen, Phosphorus, and Eutrophication in Streams. Inland Waters, 6, 155-164.
https://doi.org/10.5268/IW-6.2.909
[21] Finlay, J.C., Small, G.E. and Sterner, R.W. (2013) Human Influences on Nitrogen Removal in Lakes. Science, 342, 247-250.
https://doi.org/10.1126/science.1242575
[22] Penuelas, J., Poulter, B., Sardans, J., et al. (2013) Human-Induced Nitrogen-Phosphorus Imbalances Alter Natural and Managed Ecosystems across the Globe. Nature Communications, 4, 2934-2943.
https://doi.org/10.1038/ncomms3934